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“Through measurement to knowledge,” coined by Kamerlingh Onnes in 1882, succinctly 

conveys the critical role of measurement in science (Laesecke, 2002). Historically, significant 

advances in scientific understanding have followed advances in measurement and observation. 

As the resolving power of an instrument increased, so have gains in the understanding of the 

phenomena being observed. An example is the microscope, which led to insights, verification, 

and new research questions and theories over the last 300 years since its invention. The 

microscope’s resolution—the degree of detail that could be distinguished in an image—allowed 

observation of processes and states that were previously unobservable.  

We are now approaching a similar potential in the measurement of students’ learning 

processes using technology-based tasks. Technology-based tasks can be instrumented to record 

fine-grained observations about what students do in the task as well as capture the context 

surrounding the behavior. Advances in how such data are conceptualized, in storing and 

accessing large amounts of data (“big data”), and in the availability of analysis techniques that 

provide the capability to discover patterns from big data are spurring innovative uses for 

assessment and instructional purposes. One significant implication of the higher resolving power 

of technology-based measurement is its use to improve learning via individualized instruction.  

Over the last decade there has been renewed interest in the idea of individualized 

instruction (also called personalized learning). This interest is being driven in part by advances in 

technology (e.g., ADL, 2009; DOE, 2010; IEEE LTSC, 2006), advances in assessment (e.g., 

Baker, 1997; Mislevy, in press; NRC, 2001b), and a persistent desire to increase the access, 

efficiency, and cost-effectiveness of training and education (e.g., Fletcher, Tobias, & Wisher, 

2006). Personalization is so significant that it is one of 14 engineering Grand Challenges 

identified by the National Academy of Engineering (2008). 

There is little doubt that as the number of learning applications on digital platforms 

increases—from transmedia learning apps and games to online assessment—the generation of 

huge quantities of learning-related data will also increase. If education follows industries that 

target individuals such as retailing, manufacturing, and healthcare, there will be a widespread 

interest in how these data could be used to improve student learning and teaching (Bienkowski, 

Feng, & Means, 2012; Bienkowski, Feng, & Toyama, 2011; DOE, 2010; Manyika et al., 2011). 

A key issue is how to leverage these data to measure what students understand and can do, to 
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derive meaningful measures of cognitive and affective processes, and to develop capabilities for 

precise diagnosis and targeting of instruction.  

The remainder of this chapter assumes that there will be a continued increase in the 

availability of devices with which to observe student behavior and the generation of data 

associated with students’ interaction with those devices. Examples are provided in two broad 

areas to illustrate how different levels of educational data have been used to understand student 

learning via a coarse-grained learning analytics approach and via a fine-grained learning process 

approach. Implications for adaptive systems for teaching and learning are discussed.  

Levels of Data Useful for Understanding Student Performance 

For the purpose of understanding a student’s knowledge and skills, it is helpful to view 

data at three levels. Each level of data represents different levels of aggregation and can be used 

to answer different kinds of questions. At the highest level of aggregation is system-level data. 

For example, the data housed in a student information system (SIS) reflect the indicators 

important to an institution. In a university, these data would include students’ course-taking 

information, course grades, high school information, and demographic information. These kinds 

of data allow institutions to ask questions about system-level issues such as student retention 

rates, graduation rates, and time to degree. Educational measurement often generates individual-

level data. Some examples include total score on an achievement test, scores on a performance 

task, or scores on individual items in a test. In general, this level has been the finest grain-size 

used in educational measurement. More recently, there has been interest in the use of data at an 

even finer level of detail and made practical only in technology-based applications (e.g., 

Romero, Ventura, Pechenizkiy, & Baker, 2011). Transaction-level data reflect a student’s 

interaction with a system where the interaction may be an end in itself (e.g., the action a learner 

performs as part of gameplay) or a means to an end (e.g., the act of uploading an assignment in a 

learning management system). In either case, these interactions are increasingly becoming data 

sources about students’ moment-to-moment choices on some task and are beginning to be 

captured and stored in a format suitable for analyses of student learning.  
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Examples of Using Data to Individualize Teaching and Learning 

In this section two sets of examples are provided to illustrate opposite ends of the data 

spectrum. The first example is the use of learning analytics in a higher education setting that 

fuses macro-level data from the institution’s SIS with usage data from the institution’s learning 

management system (LMS) to predict individual student success in a course. The second set of 

examples focus on the derivation of fine-grained measures to understand student learning 

processes.  

Learning Analytics 

Learning analytics is the “use of analytic techniques to help target instructional, 

curricular, and support resources to support the achievement of specific learning goals” (van 

Barneveld, Arnold, & Campbell, 2012, p. 8). In higher education, learning analytics uses data 

culled from the SIS, LMS, course grade books and other information sources. Traditionally SIS 

data have been used to monitor various institutional indicators such as undergraduate retention 

rates. A recent study that examined the relationship between LMS usage and course outcome 

found LMS usage to be a good predictor of success when the usage activity was directly related 

to the learning outcomes of the course (e.g., Macfadyen & Dawson, 2010). The goal of learning 

analytics is to enable instructors and institutions to tailor the educational experiences of 

individual students in near real-time. Example applications include predicting student outcomes, 

creating course dashboards, evaluating curriculum, and identifying students at risk of failing 

(Bach, 2010). Learning analytics is expected to be implemented in an increasing number of 

institutions over the next five years (Johnson, Adams, & Cummins, 2012). 

One example of learning analytics is the Signals project at Purdue University (Campbell 

& Oblinger, 2007). Signals began as an initiative to predict student success (i.e., grades) in a 

course. Signals assumed student success was a function of the student’s background (e.g., 

aptitude, prior experiences) and the student’s effort in a course. Student background measures 

were derived from the SIS, which contained information typical of institutional data (e.g., 

demographic, SAT®/ACT® scores, high school academic performance, current academic 

performance, course-taking patterns). Effort was operationalized as the degree to which the 

student used the university’s LMS. The LMS housed course assignments, assessments, and 

messages. A logistic regression model incorporated these sets of variables to predict course 
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grades (A/B, or C/D/F). The model predicted student course pass as 80% for freshman students 

(Campbell, 2007).  

One important function of the Signals system is to allow an instructor to predict 

individual student risk. An instructor can run the prediction model for each student in the class. 

Each student’s data are retrieved from the SIS and combined with the current usage data from the 

LMS. If a student is predicted to be at high risk of not earning an A or B in the course, an 

intervention can be initiated. The instructor can send students emails and text messages, set up 

face-to-face meetings, or refer them to academic advisors. Compared to a control group that 

received no intervention, early and frequent intervention with students identified as at-risk 

improved their academic performance and help-seeking behavior (Iten, Arnold, & Pistilli, 2008). 

Feedback that appeared most helpful for student improvement was explicit and focused on 

improving course outcomes (Tanes, Arnold, King, & Remnet, 2011).  

From the perspective of relational data management, the designers of Signals asked a key 

question: Could the information from existing data stores designed for one purpose be used to 

make point predictions about an individual for the more nuanced purpose of identifying 

individuals at risk of not being successful? Signals exemplifies a practical approach to relational 

data management to support student learning. Using the institution’s existing SIS guarantees the 

availability of background data as these data are available “for free” and populated regularly 

from pre-admissions to graduation. Using the institution’s existing LMS again guarantees the 

availability of student engagement data to the extent that students are required to interact with 

the LMS to be successful in the class. The use of the LMS as a data source is a practical way to 

incorporate course-specific information into the prediction model to allow tailoring to a specific 

situation. 

Learning Processes 

One limitation of general purpose systems designed to support student learning (e.g., an 

LMS) is that they are designed to host content and not designed to measure learners’ interaction 

with that content. The quality of the measures derived from a general purpose system may be 

limited to behavior such as frequency of access, time spent on a task, textual data that are entered 

by students in a discussion board, and student ratings. This is understandable as the systems are 

designed to provide an infrastructure to support the delivery of a course. However, usage as a 
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proxy for learning outcomes is less desirable than measures derived from students’ direct 

interaction with a task.  

Students’ interaction in a task has two dimensions: Outcome measures, which address 

whether students were able to complete the task, and process measures, which address what 

students were doing throughout the task. In the first dimension, performance on the task itself is 

taken as an index of understanding. This has been the traditional approach of online performance 

assessments (Baker, Chung, & Delacruz, 2008). The second approach is to derive meaningful 

measures from students’ interaction with the system as they attempt to accomplish the objectives 

of the task. The more the process measures target students’ behavior directly relevant to 

achieving the outcome, the higher the measures’ diagnostic value and their potential to predict 

the outcome.  

In the next section, three illustrative examples are drawn from research conducted at the 

National Center for Research on Evaluation, Standards, and Student Testing (CRESST). The 

examples are illustrative and not intended to be a comprehensive review of the literature. A line 

of research asked three questions related to online measurement of learning processes: (a) To 

what extent does students’ online behavior relate to their cognitive processing? (b) To what 

extent can students’ online behavior be used to model their problem solving process? and (c) To 

what extent can students’ online behavior be used diagnostically to reveal understandings and 

misconceptions? The first question was addressed by examining the extent to which measures 

based on students’ online behavior correlated with measures based on their cognitive processes 

(as measured via their think-alouds). The second question examined user-interface design to 

extract meaningful data from students’ interaction with a simulator. The interface ensured that 

the measurement reflected a user’s intent, which is critical when attempting to model students’ 

problem solving processes. The last question addressed both ideas in a single application: Games 

for learning. In this case, the extraction of meaningful data is baked into the task itself. Well-

designed games are inherently engaging and gameplay behavior is purposeful. When success in 

the game requires specific domain knowledge and the “game mechanics” require use of that 

domain knowledge, then the gameplay behavior itself reflects students’ understanding. 

Underlying all three questions is the collection of fine-grained behavioral data and its use to gain 

insight about students’ learning processes. 
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To what extent does students’ online behavior relate to their cognitive processing? 

In this first example, Chung, de Vries, Cheak, Stevens, and Bewley (2002) investigated the 

cognitive processes underlying an online problem solving task. Chung et al.’s study was 

interesting because they used a large sample (89 participants) to examine the relationship 

between participants’ moment-to-moment online behavior and their moment-to-moment 

cognitive processing. Participants were tasked to help a fictitious friend determine who her 

“true” parents were from a set of five parents (Stevens & Casillas, 2006). Participants could 

request various medical tests (e.g., blood type) that would eliminate one or more sets of parents. 

A library was available that described each test and how to interpret the results. Distracter 

information in the form of opinions was provided. Participants’ online behavior was logged 

automatically by the web server and participants’ were asked to think aloud as they engaged in 

the task. The think-aloud data were coded and yoked to the web pages participants were viewing; 

thus, rich behavioral and cognitive processing trace data were available to complement the 

performance data. 

Chung et al. (2002) coded participants’ think-aloud data to form categories of cognitive 

processing (e.g., accurate inferences; inaccurate inferences). Behavioral measures were derived 

from participants’ actions (e.g., examined the test results), and performance measures based on 

the number of attempts participants took to solve the problem. Chung et al. found significant 

correlations between students’ online behavior and their cognitive processing, particularly with 

processes that required reasoning (e.g., drawing correct inferences from a series of test results). 

Participants’ online behaviors were quite systematic and purposeful, even when the behavioral 

data appeared random. For example, what initially appeared as thrashing behavior was explained 

by participants’ think-alouds as them having little idea about what to do in the task. These results 

in general lend support to the idea that students’ online behavior reflects their cognitive 

processes.  

To what extent can students’ online behavior be used to model their problem solving 

process? In the second example, Chung and Baker (2003) investigated whether the “generate-

and-test” problem solving strategy could be modeled from participants’ interaction with a 

custom-developed simulator. One underlying problem with well-designed user interfaces is that 

they may work against the measurement of user intent by making the user interface too easy. For 
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example, measuring whether a student was monitoring time can be difficult because time is 

typically always visible on a well-designed interface. In their study, Chung and Baker tested a 

click-through interface where the presence of the information was made obvious, but accessing 

the information required participants to click through an interface element to reveal the 

information. This technique allowed tracking of the information participants were actually 

viewing and the order they were viewing the information.  

In the Chung and Baker (2003) study, participants were required to modify a bicycle 

pump design to meet performance constraints. The information available to the participant was 

the values of the various pump design variables. The simulation task was instrumented to log the 

critical events that mapped to components of the generate-and-test model (Jonassen, 2010; Katz, 

& James, 1998; Newell & Simon, 1972), which involves learners generating an initial solution to 

a design and then testing that design for adequacy (e.g., design activities, testing the design, 

inspecting the results, solving the problem). Using sequential analyses, Chung and Baker found 

that participants’ online behavior followed the generate-and-test model. Successful participants 

tended to access only the information needed to solve the problem rather than view all 

information for all pump parameters and converged to a solution faster than less successful 

participants. After incorrect solution attempts, participants tended to examine pump parameters 

and adjust their pump design, suggesting they were reevaluating the adequacy of their design.  

As with the first example, participants’ online behaviors were very systematic and 

mapped to a theoretically-based problem solving process. The current example also illustrated 

the focus on ensuring as much as possible that the behavior observed is both theoretically guided 

and reflective of participants’ cognitive processing. Requiring users to click through an interface 

element to view information left little doubt about what participants were viewing because they 

had to overtly take action to view the information.  

To what extent can students’ online behavior be used diagnostically to reveal 

understandings and misconceptions? In the final example, gameplay is being examined as a 

source of a data for deriving diagnostic information about what students know and whether they 

possess particular misconceptions in the area of fraction addition. Interestingly, when games are 

used for learning and assessment purposes, the task can more easily embody the features 

described by the first two examples compared to simulations or other formats. As a measurement 
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platform, unique interactions (game mechanics) can be designed to require application of 

specific domain knowledge thereby serving as a kind of test. An interaction that might be viewed 

as awkward in a simulation (e.g., the click through interface from the second example) might be 

more acceptable in a game context if the interaction is part of the game scenario. As a learning 

platform, designing the game to require use of domain knowledge (e.g., understanding what a 

denominator is) creates the potential for the game to expose players’ knowledge gaps. And when 

the game mechanic is central to gameplay and success, then the game will evoke cognitive 

processing directed at beating the game, and evoke sustained and effortful performance from the 

player (Baker, Chung, & Delacruz, 2012; Shute, Ventura, Bauer, & Zapata-Rivera, 2009; 

Wainess, Koenig, & Kerr, 2010). 

To illustrate these ideas, the final example is from a CRESST-developed game designed 

to increase students’ understanding of the basic fractions concepts of unit and piece size 

(denominator). The game scenario is to help the character, Patch, move from its initial position to 

the goal position to free a trapped cat. Patch can only move by following a path specified by the 

player. The player lays down segments of rope for Patch to follow. The distance Patch travels is 

determined by the sum of the lengths of the rope segments.  

Successful gameplay requires students to first determine the whole unit and then the size 

of any fractional pieces. The game board is a one-dimensional path (like a number line) or a two-

dimensional grid. The grid changes for each game level, which provides students with practice at 

identifying the unit. Adding rope pieces to the path represents fractional addition and operations 

are only allowed with like-sized rope pieces. This adding game mechanic corresponds to adding 

fractions with common denominators. A successful solution results in Patch traveling the 

appropriate distance to reach the cat, which mathematically is the sum of all rope segment 

lengths.  

The use of gameplay to detect what students do and do not understand is promising for 

several reasons. In prior research with the game, students have reported the games to be more 

desirable than traditional classroom instruction and are remarkably engaged in the task. Second, 

students cannot beat the game without having an understanding of the targeted fraction concepts. 

The combination of high task engagement and high knowledge requirements creates a testing 

situation where students exert high effort to beat the level. As suggested by the previous two 

examples, students’ online behavior is systematic and purposeful. However, unlike the second 
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example where the user interface was intentionally modified to allow for detection of intent (thus 

imposing a user interface cost to the action), in a game there is more flexibility in how the 

interface could behave. An action that might be considered cumbersome in a simulation can be 

perfectly acceptable in a game. And therein lies the potential for the measurement of learning: 

The creation of game mechanics—the actions in a game that are the essential actions in game 

play—that also are explicit tests of knowledge (Baker et al., 2012; Plass, Frye, Kinzer, Homer, & 

Perlin, 2011). 

The idea that players’ behavior can yield meaningful insight into their understanding has 

been demonstrated in the fraction game in two ways. First a priori specification of in-game 

processes, such as correct additions, incorrect addition attempts, and maximum game level 

reached, all correlated in expected directions with players’ prior fractions knowledge and their 

self-reported math grades (Vendlinski, Chung, Binning, & Buschang, 2011). While these game-

based measures provided evidence that the game requires knowledge of fractions concepts, they 

are not precise about the specific concepts students have difficulty on—math or game.  

The second way that players’ behaviors can reveal their understanding is in the strategies 

they use as they attempt to solve a level. Because gameplay can unfold in different ways across 

different levels, a priori specification of the specific gameplay behavior to examine is difficult. 

The use of cluster analysis has been particularly helpful in the discovery of gameplay patterns—

sets of co-occurring events in a game level. Cluster analysis is a data mining technique useful for 

extracting learning-related patterns from online behavior (Antonenko, Toy, & Niederhauser, 

2012). The cluster analysis has yielded discovery of player errors that verified anecdotal 

accounts and more importantly, led to the discovery of errors and misconceptions that had not 

initially been under consideration (Kerr & Chung, 2011; Kerr, Chung, & Iseli, 2011). The two 

errors that have been observed consistently across studies have been unitizing errors and 

partitioning errors. Unitizing errors are when students consider a unit as the entire length of a 

grid by ignoring the intervening unit markers, and partitioning errors, where students count the 

tick marks that partition the unit and not the number of fractional pieces that make up a unit. 

These two errors have been found in the literature on fractions understanding to be quite 

common (NRC, 2001a). 
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Implications 

The idea of increased resolving power based on fine-grained data was presented in the 

context of relational management of educational data. At one end of the data spectrum was the 

example of Signals, which was used as an example of fusing SIS and LMS data to predict 

individual student success in a course. At the other end of the data spectrum was the set of 

examples on the use of fine-grained data on online behavior to infer student learning processes 

and understanding.  

An implication of the availability of such data is the development of adaptive educational 

systems. General models of adaptation have been established in the literature and are referred to 

as macroadaptation or microadaptation (e.g., Corno & Snow, 1986; Glaser, 1977; Park & Lee, 

2003). Recent work on adaptivity with computer-based technology has focused on the questions 

of what to adapt and how to adapt (e.g., Shute & Zapata-Rivera, 2012). Macroadaptation refers 

to the adaptation of the instructional environment to the individual such as a teaching strategy, a 

prescribed curriculum plan based on students’ needs (e.g., an IEP), and allocation of instructional 

resources and materials to accommodate individual student needs. In microadaptation, the 

instructional decisions are based on moment-to-moment interactions with a student such as in a 

one-on-one tutoring situation or in computer-based situations that monitor and respond to a 

student’s ongoing progress on a task. In either adaptation model, the goal is to adapt instruction 

as precisely as possible to the particular student’s need with the goal of maximizing learning 

outcomes. The role relational educational data has in each of these approaches is described next. 

Adaptive Systems to Support Teaching 

With respect to supporting teaching, the development and use of data-driven systems 

designed specifically to support educational improvement in K-12 settings was pioneered by 

Baker (2000) with the Quality School Portfolio (QSP) system. QSP provided the capability for 

administrators and teachers to easily import student data at the individual level, including 

background and demographic information, standardized test scores, benchmark test scores, and 

whatever other data were available. Graphing, analyses, and a variety of reporting formats were 

part of the standard QSP services. Unlike Signals, QSP was designed to provide more analytical 

control that would allow administrators and teachers to identify areas in need of improvement 

specific to the user’s district, school, or classroom.  
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A key feature of QSP was the capability to disaggregate student achievement data, 

allowing administrators and teachers to conduct data analyses by subgroups. A key finding from 

a large-scale implementation of QSP was that the large majority of users reported using the 

system formatively to revise curriculum and instruction. However, the data these decisions were 

based on were coarse-grained data such as standardized test results and benchmark test results 

(Heritage, Lee, Chen, & LaTorre, 2005). The general lack of diagnostic information is typically 

cited as a major shortcoming of the use of achievement tests for instructional use (Heritage & 

Yeagley, 2005; Herman, Yamashiro, Lefkowitz, & Trusela, 2008). 

The reporting of diagnostic information about the particular concepts and misconceptions 

to the teacher and student may be the area of greatest leverage when using relational 

management systems. As discussed in the examples, transaction-level data appear to reflect 

students’ underlying cognitive processes and knowledge. When computer-based applications 

(e.g., games) are designed around learning objectives and purposively instrumented to capture 

meaningful events, the discovery of strategies and common errors becomes possible using 

machine learning techniques (Chung & Kerr, 2012). As the number of learning apps and games 

increase, requiring students to use those apps and games for homework, practice, or other 

educational purposes may be a compelling way to motivate students to engage educational 

content while also providing a source of diagnostic information for teachers. Best practices 

developed by CRESST researchers on how to integrate math games into the curriculum have 

included identification of common errors exposed by games, what the errors imply about student 

understanding, and instructional strategies to bolster students’ understanding (Vendlinksi & 

Buschang, 2012). 

Adaptive Systems to Support Personalization 

One long-term trend educational technology is moving towards is transmedia whereby 

learners engage in coherent learning experiences across different media platforms. The U.S. 

Department of Education’s Ready To Learn (RTL) program is spurring the development of 

young children’s trans-media apps, which include games integrated with formal learning media 

and other educational programming. These technologies will be instrumented to capture learners’ 

interactions, and development of measures of learning or proficiency will be based in part on the 

learner’s interaction with the apps (CPB & PBS KIDS, 2011).  
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A fundamental issue is the technical quality of measures derived from fine-grained data. 

There has been little empirical research on how to establish the technical quality of such 

measures and only recently have psychometricians begun to address this issue (see Behrens et 

al., 2011; Mislevy, in press). Best practices are being developed from various game and 

simulation researchers (e.g., Chung & Kerr, 2012; Plass et al., 2011; Wainess et al., 2010) on the 

very first steps of the capture process—what to measure and how to measure it—as this step is 

often unarticulated and not commonly known, resulting in unusable or uninformative data. A 

practice recognized as undesirable is to collect “everything” (given the ease with which such data 

can be collected) and then derive measures post hoc after the data are collected. When 

developing measures of learning, this approach can be fatal as “everything,” unless precisely 

specified by researchers, will be defined by non-researchers and may not be the indicators related 

to learning or stored in a format suitable for analysis. Much more research is needed on how to 

derive meaningful measures from fine-grained data. Chung and Kerr (2012) describe an 

approach used for a CRESST-developed game that is based on observational research tradition, 

conceptualizing learners’ interactions with the system as a type of behavioral observation. The 

principal advantage of viewing an interaction as a measurement point is that issues of validity 

and reliability become central to conceptualizing what to measure, how to measure it, and how 

the interaction relates to learning processes and outcomes. Precision is gained through an 

analysis of the interaction with respect to the cognitive demands of the task, which can expose 

the contextual information surrounding the interaction that will allow interpretation of the 

interaction.  

The use of transaction data is an emerging area of research for educational data mining 

and learning analytics researchers (e.g., Baker & Yacef, 2009; Romero & Ventura, 2007; 

Siemens & Long, 2011). For example, progress has been made on developing robust measures of 

students’ online engagement, “gaming” behavior (Baker, Corbett, Roll, & Koedinger, 2008), and 

off-task behavior (Baker, 2007) in an intelligent tutor system. When part of a formalized 

assessment design process such as Evidence Centered Design (Mislevy, in press), fine-grained 

measures derived from students’ online interactions can be part of an evidence chain used to 

generate insight into learners’ progression through a task—their ongoing learning, errors, and 

overall achievement (Behrens, Mislevy, DiCerbo, & Levy, 2011).  



 Toward the Relational Management of Educational Measurement Data Gregory K. W. K. Chung 

The Gordon Commission on the Future of Assessment in Education  

The development of robust measures will presumably lead to more effective instructional 

practices and student learning. Whether diagnostic information is culled from gameplay and 

reported to teachers to help them decide where to allocate instructional resources, or used in 

adaptive technology-based systems to “sense” when to provide immediate feedback or execute 

different instructional branching strategies, the availability of high-quality measures will be 

critical for any precise targeting of instruction.  

In 2003 Gordon and Bridglall lamented the state of affairs where policymakers, 

researchers, and practitioners depended on aggregated data to make educational decisions. Ten 

years later, advances in technology have made feasible the large-scale capture, processing, and 

analysis of students’ moment-to-moment interactions with technology-based systems. As 

education enters the era of big data and transmedia-based learning, the capture of multiple levels 

of data for an individual that spans system-level, individual-level, and transaction-level data will 

provide new opportunities to understand student learning to a degree of precision rarely possible 

before, and provide new opportunities to leverage such data to deliver on the promise of 

personalized instruction. 
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