We invite you to

Take a Closer Look...

The GRE® Biochemistry, Cell and Molecular Biology Test

Does your graduate department require or recommend that graduate applicants take the Biochemistry, Cell and Molecular Biology Subject Test offered by the GRE® Program?

This Subject Test can be very useful in distinguishing among candidates whose credentials are otherwise similar. The test measures undergraduate achievement and provides a common yardstick for comparing the qualifications of students from a variety of colleges and universities with different standards. Consider these factors:

Predictive validity
Subject Test scores are a valid predictor of graduate school performance, as confirmed by a meta-analysis performed by independent researchers who analyzed over 1,700 studies containing validity data for GRE tests.* This study showed that GRE Subject Tests are reliable predictors of a range of outcome measures, including first-year graduate grade-point average, cumulative graduate grade-point average, comprehensive examination scores, publication citation counts, and faculty ratings. For more information about the predictive validity of the GRE tests, visit www.ets.org/gre/validity.

Content that reflects today’s curricula
The test contains about 175 multiple-choice questions covering topics representing three major areas: biochemistry, cell biology, and molecular biology and genetics. Along with the total score, you receive a subscore in each of these areas to aid in guidance and placement. A detailed list of test content areas can be found on the back of this sheet. Many questions require problem-solving skills and analysis based on descriptions of laboratory situations, diagrams, or experimental results. Additional information about the test and a full-length practice test are provided FREE with test registration and can be downloaded at www.ets.org/gre/subject/prepare.

Developed by leading educators in the field
The content and scope of each edition of the test are specified and reviewed by a distinguished team of undergraduate and graduate faculty representing colleges and universities across the country.

For more information about this GRE® Subject Test, contact the GRE Program:
Phone: 1-609-683-2002
Email: gretests@ets.org
Fax: 1-609-683-2040

Educational Testing Service
Rosedale Road
Princeton, NJ 08541

www.ets.org/gre
Test Content

I. BIOCHEMISTRY (36%)

A. Chemical and Physical Foundations
 - Thermodynamics and kinetics
 - Redox states
 - Water, pH, acid-base reactions and buffers
 - Solutions and equilibria
 - Solute-solvent interactions
 - Chemical interactions and bonding
 - Chemical reaction mechanisms

B. Structural Biology: Structure, Assembly, Organization, and Dynamics
 - Small molecules
 - Macromolecules
 - Supramolecular complexes

C. Catalysis and Binding
 - Enzyme reaction mechanisms and kinetics
 - Ligand-protein interaction

D. Major Metabolic Pathways
 - Carbon, nitrogen, and sulfur assimilation
 - Anabolism
 - Catabolism
 - Synthesis and degradation of macromolecules

E. Bioenergetics
 - Energy transformations at the substrate level
 - Electron transport
 - Proton and chemical gradients
 - Energy coupling

F. Regulation and Integration of Metabolism
 - Covalent modification of enzymes
 - Allosteric regulation
 - Compartmentation
 - Hormones

G. Methods
 - Spectroscopy
 - Isotopes
 - Separation techniques
 - Immunotechniques

II. CELL BIOLOGY (28%)

A. Cellular Compartments of Prokaryotes and Eukaryotes: Organization, Dynamics and Functions
 - Cellular membrane systems
 - Nucleus
 - Mitochondria and chloroplasts

B. Cell Surface and Communication
 - Extracellular matrix
 - Cell adhesion and junctions
 - Signal transduction
 - Receptor function
 - Excitable membrane systems

C. Cytoskeleton, Motility, and Shape
 - Regulation of assembly and disassembly of filament systems
 - Motor function, regulation and diversity

D. Protein, Processing, Targeting, and Turnover
 - Translocation across membranes
 - Posttranslational modification
 - Intracellular trafficking
 - Secretion and endocytosis
 - Protein turnover

E. Cell Division, Differentiation and Development
 - Cell cycle, mitosis, and cytokinesis
 - Meiosis and gametogenesis
 - Fertilization and early embryonic development

III. MOLECULAR BIOLOGY AND GENETICS (36%)

A. Genetic Foundations
 - Mendelian and non-Mendelian inheritance
 - Transformation, transduction, and conjugation
 - Recombination and complementation
 - Mutational analysis

B. Chromatin and Chromosomes
 - Karyotypes
 - Translocations, inversions, deletions and duplications
 - Aneuploidy and polyploidy

C. Genomics
 - Genome structure
 - Physical mapping
 - Repeated DNA and gene families

D. Genome Maintenance
 - DNA replication
 - DNA damage and repair
 - DNA modification
 - DNA recombination and gene conversion

E. Gene Expression
 - The genetic code
 - Transcription/transcriptional profiling
 - RNA processing
 - Translation

F. Gene Regulation
 - Positive and negative control of the operon
 - Promoter recognition by RNA polymerases
 - Attenuation and anti-termination
 - Trans-acting regulatory factors
 - Gene rearrangements and amplifications
 - Small non-coding RNAs

G. Viruses
 - Genome replication and regulation
 - Virus assembly
 - Virus-host interactions

H. Methods
 - Restriction maps and PCR
 - Nucleic acid blotting and hybridization
 - DNA cloning in prokaryotes and eukaryotes
 - Sequencing and analysis
 - Protein-nucleic acid interaction
 - Transgenic organisms
 - Microarrays