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Foreword 

This booklet grew out of a half-day class on equating that I teach for new statistical staff at 
Educational Testing Service (ETS). The class is a nonmathematical introduction to the topic, 
emphasizing conceptual understanding and practical applications. The class consists of 
illustrated lectures, interspersed with self-tests for the participants. I have included the self-tests 
in this booklet, at roughly the same points as they occur in the class. The answers are in a 
separate section at the end of the booklet. 

The topics in this second edition include raw and scaled scores, linear and equipercentile 
equating, data collection designs for equating, selection of anchor items, equating constructed-
response tests (and other tests that include constructed-response questions), and methods of 
anchor equating. I begin by assuming that the participants do not even know what equating is. By 
the end of the class, I am explaining the logic of the Tucker method of equating and what 
conditions cause it to be biased. In preparing this booklet, I have tried to capture as much as 
possible of the conversational style of the class.  
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Objectives 

Here is a list of the instructional objectives of this booklet. If the booklet is completely 
successful as a means of instruction, someone who has read it and done the self-test exercises 
will be able to... 

Explain why testing organizations report scaled scores instead of raw scores. 
State two important considerations in choosing a score scale. 
Explain how equating differs from statistical prediction. 
Explain why equating for individual test takers is impossible. 
State the linear and equipercentile definitions of comparable scores, and explain why they are 

meaningful only with reference to a population of test takers. 
Explain why linear equating leads to out-of-range scores and is heavily group-dependent, and 

how equipercentile equating avoids these problems. 
Explain why equipercentile equating requires “smoothing.” 
Explain how the precision of equating (by any method) is limited by the discreteness of the score 

scale. 
Describe five data collection designs for equating, and state the main advantages and limitations 

of each. 
Explain the problems of “scale drift” and “equating strains.” 
State at least six practical guidelines for selecting common items for anchor equating. 

Explain what special procedures are necessary to maintain comparability of scores on 
constructed-response tests and performance assessments (and on other tests that include 
constructed-response questions). 

Explain the fundamental assumption of anchor equating and explain how it differs for different 
equating methods. 

Explain the logic of chained equating methods in an anchor equating design. 
Explain the logic of equating methods that condition on anchor scores, and identify the 

conditions under which these methods are biased. 
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Prerequisite Knowledge 

This booklet emphasizes concepts, not mathematics. I assume that the reader is familiar with the 
following basic statistical concepts, at least to the extent of knowing and understanding the 
definitions given below. (These definitions are all expressed in the context of educational testing, 
although the statistical concepts are more general.)  

Score distribution: The number (or the percentage) of test takers at each score level. 

Mean score: The average score, computed by summing the scores of all test takers and dividing 
by the number of test takers.  

Standard deviation: A measure of the dispersion (spread, amount of variation) in a score 
distribution. It can be interpreted as the average distance of scores from the mean, where the 
average is a special kind of average called a “root mean square,” computed by squaring the 
distance of each score from the mean, then averaging the squared distances, and then taking the 
square root. 

Correlation: A measure of the strength and direction of the relationship between the scores of 
the same people on two tests. 

Percentile rank of a score: The percentage of test takers with lower scores, plus half the 
percentage with exactly that score. (Sometimes it is defined simply as the percentage with 
lower scores.) 

Percentile of a distribution: The score having a given percentile rank. The 80th percentile of a 
score distribution is the score having a percentile rank of 80. (The 50th percentile is also 
called the median; the 25th and 75th percentiles are also called the 1st and 3rd quartiles.) 
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Why Not IRT? 

The subtitle of this booklet—“without IRT”—may require a bit of explanation. Item response 
theory (IRT) has become one of the most common approaches to equating test scores. Why is it 
specifically excluded from this booklet? The short answer is that IRT is outside the scope of the 
class that this booklet is based on and, therefore, outside the scope of this booklet. Many new 
statistical staff members come to ETS with considerable knowledge of IRT but no knowledge of 
any other type of equating. For those who need an introduction to IRT, there is a separate half-
day class.  

But now that IRT equating is widely available, is there any reason to equate test scores any other 
way? Indeed, IRT equating has some important advantages. IRT offers tremendous flexibility in 
choosing a data collection plan for equating the scores. If the necessary data on the test questions 
are available, IRT can be used to equate the scores on a new edition of the test before anyone 
actually takes that new edition, eliminating any delay in reporting scores.  

However, this flexibility comes at a price. IRT equating is complex, both conceptually and 
procedurally. The IRT definition of equated scores is based on an abstraction, rather than on 
statistics that can actually be computed. And IRT is based on strong assumptions that often are 
not a good approximation of the reality of testing. For example, IRT assumes that the probability 
that a test taker will answer a test question correctly does not depend on whether the question is 
placed at the beginning, in the middle, or at the end of the test.  

Many testing situations do not require the flexibility that IRT equating offers. In those cases, I 
believe it is better to use methods of equating for which the procedure is simpler, the rationale is 
easier to explain, and the underlying assumptions are closer to reality. 

Teachers’ Salaries and Test Scores 

For many people, a good way to start thinking about an unfamiliar topic, such as equating test 
scores, is to start with a familiar topic, such as money. How much did the average U.S. teacher’s 
salary change over the 40-year period from 1958 to 1998? In 1958, the average teacher’s salary 
was about $4,600; in 1998, it was about $39,000. But in 1958, the teacher could buy a gallon of 
gasoline for 30 cents; in 1998, it cost about $1.05, or 3.5 times as much. In 1958, the teacher 
could mail a first-class letter for 4 cents; in 1998, it cost 33 cents, roughly 8 times as much. A 
house that cost $20,000 in 1958 might have cost $200,000 in 1998—10 times as much. Clearly, 
the numbers did not mean the same thing in 1998 that they did in 1958. A dollar in 1958 bought 
more than a dollar in 1998. Prices in 1958 and prices in 1998 were not comparable. 
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How can you meaningfully compare the price of something in one year with its price in another 
year? Economists use something called “constant dollars.” Each year, the government’s 
economists calculate the cost of a particular selection of products that is intended to represent the 
things that a typical American family buys in a year. The economists call this mix of products the 
“market basket.” They choose one year as the reference year. Then they compare the cost of the 
market basket in each of the other years with its cost in the reference year. This analysis enables 
them to express wages and prices from each of the other years in terms of reference-year dollars. 
To compare the average teacher’s salary in 1958 with the average teacher’s salary in 1998, they 
would convert both those salaries into reference-year dollars. 

Now, what does all this have to do with educational testing? Most standardized tests exist in 
more than one edition. These different editions are called “forms” of the test. All the forms of the 
test are intended to test the same skills and types of knowledge, but each form contains a 
different set of questions. The test developers try to make the questions on different forms 
equally difficult, but more often than not, some forms of the test turn out to be harder than 
others. 

The simplest way to compute a test taker’s score is to count the questions answered correctly. If 
the number of questions is not the same on all forms of the test, you might convert the number-
correct score to a percent-correct. We call number-correct and percent-correct scores “raw 
scores.” If the questions on one form are harder than the questions on another form, the raw 
scores on those two forms will not mean the same thing. The same percent-correct score on the 
two different forms will not indicate the same level of the knowledge or skill the test is intended 
to measure. The scores will not be comparable. To treat them as if they were comparable would be 
misleading for the score users and unfair to the test takers who took the form with the harder 
questions. 
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Scaled Scores 

Users of test scores need to be able to compare the scores of test takers who took different forms 
of the test. Therefore, testing agencies need to report scores that are comparable across different 
forms of the test. We need to make a given score indicate the same level of knowledge or skill, 
no matter which form of the test the test taker took. Our solution to this problem is to report 
“scaled scores.” Those scaled scores are adjusted to compensate for differences in the difficulty 
of the questions. The easier the questions, the more questions you have to answer correctly to get 
a particular scaled score.  

Each form of the test has its own “raw-to-scale score conversion”—a formula or a table that 
gives the scaled score corresponding to each possible raw score. Table 1 shows the raw-to-scale 
conversions for the upper part of the score range on three forms of an actual test. 

Table 1. Raw-to-Scale Conversion Table for Three Forms of a Test 

Raw score Scaled score:  
Form R 

Scaled score: 
Form T 

Scaled score: 
Form U 

120 200 200 200 
119 200 200 198 
118 200 200 195 
117 198 200 193 
116 197 200 191 
115 195 199 189 
114 193 198 187 
113 192 197 186 
112 191 195 185 
111 189 194 184 
110 188 192 183 
109 187 190 182 
108 185 189 181 
107 184 187 180 
106 183 186 179 
105 182 184 178 
etc. etc. etc. etc. 
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Notice that on Form R, to get the maximum possible scaled score of 200, you would need a raw 
score of 118. On Form T, which is somewhat harder, you would need a raw score of only 116. 
On Form U, which is somewhat easier, you would need a raw score of 120.  

Similarly, to get a scaled score of 187 on Form R, you would need a raw score of 109. On Form 
T, which is harder, you would need a raw score of only 107. On Form U, which is easier, you 
would need a raw score of 114. 

The raw-to-scale conversion for the first form of a test can be specified in a number of different 
ways. (I’ll say a bit more about this topic later.) The raw-to-scale conversion for the second form 
is determined by a statistical procedure called “equating.” The equating procedure determines the 
adjustment to the raw scores on the second form that will make them comparable to raw scores 
on the first form. That information enables us to determine the raw-to-scale conversion for the 
second form of the test.  

Now for some terminology. The form for which the raw-to-scale conversion is originally 
specified—usually, the first form of the test—is called the “base form.” When we have 
determined the raw-to-scale conversion for a form of a test, we say that form is “on scale.” The 
raw-to-scale conversion for each form of the test other than the base form is determined by 
equating to a form that is already on scale. We refer to the form that is already on scale as the 
“reference form.” We refer to the form that is not yet on scale as the “new form.”  

Usually, the new form is a form that is being used for the first time, while the reference form is a 
form that has been used previously. Occasionally, we equate scores on two forms of the test that 
are both being used for the first time, but we still use the terms “new form” and “reference form” 
to indicate the direction of the equating. 

The equating process determines, for each possible raw score on the new form, the 
corresponding raw score on the reference form. This equating is called the “raw-to-raw” 
equating. But, because the reference form is already on scale, we can take the process one step 
further. We can translate any raw score on the new form into a corresponding raw score on the 
reference form. Then we can translate that score on the reference form to the corresponding 
scaled score. When we have translated each possible raw score on the new form into a scaled 
score, we have the raw-to-scale score conversion for the new form. 

Unfortunately, the process is not quite as simple as I have made it seem. A possible raw score on 
the new form almost never equates exactly to a possible score on the reference form. Instead, it 
equates to a point in between two raw scores that are possible on the reference form. So we have 
to interpolate. Consider the example in Table 2. 
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Table 2. New-Form Raw Scores to Reference-Form Raw Scores to Scaled Scores 

New form raw-to-raw equating 
 

Reference form raw-to-scale conversion 
 

New form Reference form Reference form Exact scaled score 
raw score raw score raw score 

... 
59 
58 
57 
56 

... 
60.39 
59.62 
58.75 
57.88 

... 
59 
58 
57 
56 

... 
178.65 
176.71 
174.77 
172.83 

... ... ... ... 

(In this illustration, I have used only two decimal places. Operationally, we use a lot more than 
two.) Consider a test taker with a raw score of 57 on the new form. That score equates to a raw 
score of 58.75 on the reference form, which is not a possible score. But, it is 75% of the way 
from a raw score of 58 to a raw score of 59. So the test taker’s exact scaled score will be the 
score that is 75% of the way from 176.71 to 178.65. That score is 178.14. In this way, we 
determine the exact scaled score for each raw score on the new form. We round the scaled scores 
to the nearest whole number before we report them to test takers and test users, but we keep the 
raw-to-scale conversion that shows the exact scaled scores on record. We will need the exact 
scaled scores when this form becomes the reference form in a future equating. 

Choosing the Score Scale 

Before we specify the raw-to-scale conversion for the base form, we have to decide what we 
want the range of scaled scores to be. Usually, we try to choose a set of numbers that will not be 
confused with the raw scores. We want any test taker or test user looking at a scaled score to 
know that the score could not reasonably be the number or the percentage of questions answered 
correctly. That’s why scaled scores have possible score ranges like 200 to 800, or 130 to 170, or 
100 to 200.  

Another thing we have to decide is how fine a score scale to use. For example, on most tests, the 
scaled scores are reported in 1-point intervals (100, 101, 102, etc.). However, on some tests, they 
are reported in 5-point intervals (100, 105, 110, etc.) or 10-point intervals (200, 210, 220, etc.). 
Usually, we want each additional correct answer to make a difference in the test taker’s scaled 
score, but not such a large difference that people exaggerate its importance. That is why the score 
interval on the SAT®1 was changed. Many years ago, when that test was called the “Scholastic 
Aptitude Test,” any whole number from 200 to 800 was a possible score. Test takers could get 
scaled scores like 573 or 621. But this score scale led people to think the scores were more 

                                                      
1 More precisely, the SAT® I: Reasoning Test. 
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precise than they really were. One additional correct answer would raise a test taker’s scaled 
score not by 1 point, but by 8 or more points. Since 1970, the scaled scores on the SAT have 
been rounded to the nearest number divisible by 10. If a test taker’s exact scaled score is 
573.2794, that scaled score is reported as 570, not as 573. One additional correct answer will 
change the test taker’s score by 10 points (in most cases), but because all the reported scores end 
in 0, the test takers and the test users realize that a 10-point difference is just one step on the 
score scale. 

One decision to make in defining a score scale is whether to truncate the scaled scores. 
Truncating the scores at the top of the scale means specifying a maximum value for the reported 
scaled scores that is less than the maximum value that we carry on the records. For example, we 
might use a raw-to-scale conversion for the base form that converts the maximum raw score to a 
scaled score of 207.1429, but truncate the scores at 200, so that no test taker will have a reported 
scaled score higher than 200. (The raw-to-scale conversions shown in Table 1 are an example.) If 
we truncate the scores, we will award the maximum possible scaled score to test takers who did 
not get the maximum possible raw score. We will disregard some of the information provided by 
the raw scores at the top end of the score scale. Why would we want to do such a thing?  

Here’s the answer. Suppose we decided not to truncate the scaled scores. Then the maximum 
reported scaled score would correspond to a perfect raw score on the base form—100%. Now 
suppose the next form of the test proves to be easier than the base form, so that a raw score of 
100% on the second form corresponds to the same level of knowledge as a raw score of 96% on 
the base form. There will be test takers with raw scores of 100% on the easier second form 
whose knowledge would be sufficient for a raw score of only 96% on the harder base form. 
Should they get the scaled score that required a raw score of 100% on the harder base form? But, 
there may be other test takers with raw scores of 100% on the easier second form whose 
knowledge would be sufficient for a raw score of 100% on the harder base form. Is it fair to give 
them anything less than the maximum possible scaled score? Truncating the scaled scores at the 
high end of the score range gives us a way to avoid having to make distinctions that some forms 
of the test may not be difficult enough to make. 

It is also common to truncate the scaled scores at the low end of the scale. In this case, the reason 
is to avoid making meaningless distinctions. Most standardized tests are multiple-choice tests. 
On these tests, the lowest possible scores are below the chance score. That is, they are lower than 
the score a test taker could expect to get by choosing answers randomly, without reading the 
questions. On most tests, if two scores are both below the chance score, the difference between 
those scores tells us very little about the differences between the test takers who earn those 
scores. 

Although we often truncate the scaled scores before reporting them to test takers and test users, 
we keep the raw-to-scale conversion that shows the nontruncated scaled scores on record. We 
will need the full raw-to-scale conversion for the current form when it becomes the reference 
form in a future equating. 
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There is more than one way to choose the raw-to-scale conversion for the base form of a test. 
One common way is to identify a group of test takers and choose the conversion that will result 
in a particular mean and standard deviation for the scaled scores of that group. Another way is to 
choose two particular raw scores on the base form and specify the scaled score for each of those 
raw scores. Those two points will then determine a simple linear formula that transforms any raw 
score to a scaled score. For example, on the score scale for the Praxis™ tests, the lowest scaled 
score is 100; the highest is 200. When we determine the raw-to-scale conversion for the first 
form of a new Praxis test, we typically make the lowest scaled score (100) correspond to the 
chance score on the base form. We make the highest scaled score (200) correspond to a raw 
score that is 95% of the highest raw score possible on the base form.  

Some testing programs use a reporting scale that consists of a small number of broad categories. 
(The categories may be identified by labels, such as “advanced,” “proficient,” and so forth, or 
they may be identified only by numbers.) The smaller the number of categories, the greater the 
difference in meaning between any category and the next. But, if each category corresponds to a 
wide range of raw scores, there will be test takers in the same category whose raw scores differ 
by many points. To make matters worse, there will also be test takers in different categories 
whose raw scores differ by only a single point. Reporting only the category for each test taker 
will conceal some fairly large differences. At the same time, it will make some very small 
differences appear large. In my opinion, there is nothing wrong with grouping scores into broad 
categories and reporting the category for each test taker, if you also report a more detailed score 
that indicates the test taker’s position within the category. But if you report only the broad 
category, that information, for many of the test takers, will be misleading. 

Limitations of Equating 

Let’s go back to the topic I started with—teachers’ salaries. The economists’ constant dollars 
don’t adjust correctly for the cost of each kind of thing a teacher might want to spend money on. 
From 1958 to 1998, the prices of housing, medical care, and college tuition went up much more 
than the prices of food and clothing. The prices of some things, such as electronic equipment, 
actually went down. Constant dollars cannot possibly adjust correctly for the prices of all these 
different things. The adjustment is correct for a particular mix of products—the market basket.  

Similarly, if you were to compare two different test takers taking the same test, one test taker 
might know the answers to more of the questions on Form A than on Form B; the other might 
know the answers to more of the questions on Form B than on Form A. There is no possible 
score adjustment that will make Forms A and B equally difficult for these two test takers. 
Equating cannot adjust scores correctly for every individual test taker. 
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Equating can adjust scores correctly for a group of test takers—but not for every possible group. 
One group may contain a high proportion of test takers for whom Form A is easier than Form B. 
Another group may contain a high proportion of test takers for whom Form B is easier than Form 
A. There is no possible score adjustment that will make Forms A and B equally difficult for these 
two groups of test takers. For example, if one form of an achievement test happens to have 
several questions about points of knowledge that a particular teacher emphasizes, that teacher’s 
students are likely to find that test form easier than other forms of the same test. But, the students 
of most other teachers will not find that form any easier than any other form. The adjustment that 
is correct for that particular teacher’s students will not be correct for students of the other 
teachers. Equating cannot adjust scores correctly for every possible group of test takers. 

Some of the papers and articles that have been written about equating include statements that an 
equating adjustment must be correct for every individual test taker or for every possible group of 
test takers. The examples I have just presented show clearly that no equating adjustment can 
possibly meet such a requirement.2  

Fortunately, an equating adjustment that is correct for one group of test takers is likely to be at 
least approximately correct for most other groups of test takers. Note the wishy-washy language 
in that sentence: “likely to be at least approximately correct for most other groups of test takers.” 
When we equate test scores, we identify a group of test takers for whom we want the equating to 
be correct. We call this group the “target population.” It may be an actual group or a hypothetical 
group. We may identify it explicitly or only implicitly. But every test score equating is an attempt 
to determine the score adjustment that is correct for some target population. How well the results 
generalize to other groups of test takers will depend on how similar the test forms are. The more 
similar the content and difficulty of the questions on the two forms of the test, the more accurately 
the equating results will generalize from the target population to other groups of test takers. 

Another limitation of equating is a result of the discreteness of the scores. Typically, the scaled 
scores that we report are whole numbers. When the equating adjustment is applied to a raw score 
on the new form, and the equated score is converted to a scaled score, the result is almost never a 
whole number. It is a fractional number—not actually a possible scaled score. Before reporting 
the scaled score, we round it to the nearest whole number. As a result, the scaled scores are 
affected by rounding errors.  

If the score scale is not too discrete—if there are many possible scaled scores and not too many 
test takers with the same scaled score—rounding errors will not have an important effect on the 
scores. But on some tests, the raw scores are highly discrete. There are just a few possible scores, 
with substantial percentages of the test takers at some of the score levels. If we want the scaled 
scores to imply the same degree of precision as the raw scores, then the scaled scores will also 
have to be highly discrete: a small number of score levels, with large proportions of the test 
takers at some of those score levels. But with a highly discrete score scale, a tiny difference in 

                                                      
2 Fred Lord proved this point more formally. He used the term “equity requirement” to mean a requirement that an 
equating adjustment must be correct for every group of test takers that can be specified on the basis of the ability 
measured by the test. This requirement is weaker than requiring the adjustment to be correct for every possible 
group of test takers, and far weaker than requiring it to be correct for every individual test taker. Lord concluded that 
“... the equity requirement cannot hold for fallible tests unless x and y are parallel tests, in which case there is no 
need for any equating at all.” (Lord, 1980, pp. 195–196)  
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the exact scaled score, causing it to round downward instead of upward, can make a substantial 
difference in the way the score is interpreted. 

For a realistic example, suppose that the possible raw scores on an essay test range from 0 to 12, 
and nearly all the test takers have scores between 3 and 10. On this test, a difference of one raw-
score point may be considered meaningful and important. Now suppose the equating indicates 
that a raw score of 7 on Form B corresponds to a raw score of 6.48 on Form A. What can we 
conclude about the test takers who took Form B and earned raw scores of 7? The equating results 
indicate that it would be a mistake to regard them as having done as well as the test takers with 
scores of 7 on Form A. But it would be almost as large a mistake to regard them as having done 
no better than the test takers who earned scores of 6 on Form A. One solution to this problem 
would be to use a finer score scale, so that these test takers could receive a scaled score halfway 
between the scaled scores that correspond to raw scores of 6 and 7 on Form A. But then the 
scaled scores would imply finer distinctions than either form of the test is capable of making. In 
such a situation, there is no completely satisfactory solution.  

Equating Terminology 

I have already introduced several terms that people in the testing profession use when they talk 
about equating. Now I would like to introduce two more terms. Equating test scores is a 
statistical procedure; it is based on an analysis of data. Therefore, in order to equate test scores, 
we need (1) a plan for collecting the data and (2) a way to analyze the data. A plan for collecting 
data for equating is called an “equating design.” A way of analyzing data for equating is called 
an “equating method.” 

Here is a summary of the terms I have introduced: 

Raw score: An unadjusted score: number correct, sum of ratings, percentage of maximum 
possible score, “formula score” (number correct minus a fraction of the number wrong), etc. 

Scaled score: A score computed from the raw score; it usually includes an adjustment for 
difficulty. It is usually expressed on a different scale from the raw score, to avoid confusion 
with the raw score. 

Base form: The form on which the raw-to-scale score conversion was originally specified. 

New form: The test form we are equating; the test form on which we need to adjust the scores. 

Reference form: The test form to which we are equating the new form. Equating determines, for 
each score on the new form, the corresponding score on the reference form. 

Target population: The group of test takers for which we want the equating to be exactly 
correct.  

Truncation: Assigning the highest possible scaled score to more than one raw score, or 
assigning the lowest possible scaled score to more than one raw score.  

Equating design: A plan for collecting data for equating. 

Equating method: A way of analyzing data to determine an equating relationship. 
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Equating Is Symmetric 

One important characteristic of an equating relationship is symmetry. An equating relationship is 
symmetric. That is, if score x on Form A equates to score y on Form B, then score y on Form B 
will equate to score x on Form A.3   

You may wonder what’s remarkable about that. Aren’t all important statistical relationships 
symmetric? The answer is no. In particular, statistical prediction is not symmetric. 

Statistical prediction is affected by a phenomenon called “regression to the mean.” Its effect is 
illustrated in the diagram on the left in Figure 1. Suppose we knew the scores of a large group of 
test takers on Form A and Form B. Let’s choose a particular score on Form A and call it x. In 
Figure 1, I have chosen x to be a high score, far above the mean of the whole group. Let’s focus 
on just the test takers with scores of x on Form A. What would their scores on Form B look like? 
They would vary—some of the test takers would do better on Form B than on Form A; others 
would not do as well on Form B as they did on Form A. But their average score on Form B—
let’s call it y—would be closer to the mean of the total group than their score on Form A was.  

This tendency is called “regression to the mean,” and it happens whenever the scores on the two 
forms are not perfectly correlated. The weaker the correlation, the greater this tendency will be. 
If the correlation between Forms A and B were zero, the average score on Form B for those test 
takers with scores of x on Form A would be the same as the average score on Form B for all the 
test takers. 

I am using the letter y to refer to the average score on Form B for those test takers who had score 
x on Form A. Let’s focus on the test takers who had that score (y) on Form B. What would their 
scores on Form A look like? Their scores on Form A would vary, but the average would be 
closer to the mean of the total group on Form A—closer than y was to the mean of the total 
group on Form B. Let’s call that average score z.  

Suppose, then, that we want to predict the score on Form B for a test taker with a score of x on 
Form A. The best prediction would be score y, which is closer to the mean of the full group of all 
test takers. Then, if we want to predict the score on Form A for a test taker with a score of y on 
Form B, the best prediction would be z, which is closer to the mean of the full group of test 
takers—closer than y, which is closer than x. We don’t wind up back where we started. Statistical 
prediction is not symmetric.  

  

                                                      
3 A mathematician would say that the function that translates scores on Form A to scores on Form B is the inverse of 
the function that translates scores on Form B to scores on Form A. 
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Figure 1 illustrates this important difference between prediction and equating. Equating is 
symmetric; statistical prediction is not. Therefore, equating is not the same as statistical 
prediction. When we equate scores on Form A to scores on Form B, a test taker’s adjusted score 
on Form A will generally not be the best prediction of that test taker’s score on Form B. When 
we equate test scores on a new form to scores on a reference form, we are not trying to use test 
takers’ scores on the new form to predict their performance on the reference form. We are doing 
something different. Equating is not prediction. Prediction is not equating. 

Statistical prediction is not symmetric

Form A Form B Form A Form B

Equating is symmetric

x
z y

x y

Figure 1. Statistical prediction is not symmetric; equating is symmetric. 

A General Definition of Equating 

There is a single definition of equating that is general enough to include all of the types of 
equating I am going to describe. Here it is:  

A score on the new form and a score on the reference form are equivalent in a group of 
test takers if they represent the same relative position in the group.  
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You probably noticed that this definition states explicitly that the equating relationship is defined 
for a particular group of test takers. What you might not notice is that it is missing an important 
detail. If you actually try to use this definition to determine a score adjustment, you will realize 
that you have to specify what you mean by “relative position.” 

You may also have noticed that this definition says nothing about the knowledge or skills 
measured by the new form and the reference form. If you simply applied this definition, you 
could equate scores on two tests that measure very different skills or types of knowledge. In 
practice, we sometimes do use procedures based on this definition to link scores on tests that 
measure different things—but in that case, we try to describe what we are doing by some term 
other than “equating.”4 

A Very Simple Type of Equating 

Suppose you wanted to equate scores on a new form of a test to scores on a reference form of 
that test. And suppose that you knew the distribution of scores in the target population on each of 
these forms of the test. What would your equating adjustment be? 

The simplest adjustment would be to add the same number of points to the score of each test 
taker taking the new form (or subtract the same number of points, if the new form is easier). How 
many points would you add or subtract? An obvious choice would be the difference between the 
target population’s mean score on the reference form and their mean score on the new form. This 
adjustment would make the adjusted scores on the new form have the same mean (in the target 
population) as the scores on the reference form. For that reason, it is sometimes called “mean 
equating.”5 

Would this adjustment fit the general definition of equating shown above? Suppose a test taker’s 
raw score on the new form is 5 points above the target population’s mean score. Then the test 
taker’s adjusted score on the new form will be 5 points above the target population’s mean score 
on the reference form. The test taker’s adjusted score will have the same relative position in the 
target population’s reference-form score distribution as the test taker’s raw score on the new 
form has in the target population’s new-form score distribution—if “relative position” means 
“number of points above or below the mean.” So this adjustment would fit the definition. 

  

                                                      
4 If the new form and reference form measure the same skills, but at different levels of difficulty, we refer to the 
process as “vertical scaling.” If the new form and reference form measure somewhat different, but related, skills, we 
say we are determining the “concordance.” A general term that covers all these situations is “symmetric linking.” 
5 See, for example, Kolen and Brennan (2004, pp. 30–31). 
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But would it be a good adjustment to use? Let me use a made-up example to illustrate the 
problem. Suppose the numbers of easy and difficult questions on the new form and the reference 
form are like those in Table 3.  

Table 3. Difficulty of Questions in Two Forms of a Test (Illustrative Example) 

Difficulty of  
questions 

Number of 
questions on new 

form 

Number of 
questions on 

reference form 
Very difficult 5 2 

Difficult 10 8 
Medium 20 30 

Easy 10 8 
Very Easy 5 2 

The strongest test takers won’t have trouble with easy or medium difficulty questions. For them, 
a difficult form is one that has a lot of difficult questions. An easy form is one with few difficult 
questions. The new form has more difficult questions than the reference form. For the strongest 
test takers, the new form will be more difficult than the reference form. To make their scores on 
the new form comparable to their scores on the reference form, we will need to add points.  

The weakest test takers won’t have much success with the difficult questions. For them, an easy form 
is one that has plenty of easy questions. A difficult form is one with few easy questions. And 
there are more easy questions on the new form than on the reference form. For the weakest test 
takers, the new form will be easier than the reference form. To make their scores on the new 
form comparable to their scores on the reference form, we will need to subtract points.  

Conclusion: in this example, adding the same number of points to everyone’s score is not a good 
way to adjust the scores. As I said, this is a made-up example. I have exaggerated the differences 
between the two test forms. In the real world of testing, we seldom (if ever) see differences this 
large in the difficulty of the questions on two forms of a test. But we do see differences, and the 
problem still exists. 

Linear Equating 

The previous example shows that we need an adjustment that depends on how high or low the 
test taker’s score is. We can meet this requirement with an adjustment that defines “relative 
position” in terms of the mean and the standard deviation:  

A score on the new form and a score on the reference form are equivalent in a group of 
test takers if they are the same number of standard deviations above or below the mean of 
the group.  

This definition implies the following procedure for adjusting the scores: 
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To equate scores on the new form to scores on the reference form in a group  
of test takers, transform each score on the new form to the score on the reference form 
that is the same number of standard deviations above or below the mean of the group. 

This type of equating is called “linear equating,” because the relationship between the raw scores 
and the adjusted scores appears on a graph as a straight line. The diagrams in Figure 2 illustrate 
linear equating in a situation where the new form is harder than the reference form.  

-1 SD   Mean  +1 SD -1 SD   Mean  +1 SD

Raw 
score on 
ref. form

Raw score on new form

+1 SD

-1 SD

Mean

Adjusted 
score on 
new form

Raw score on new form

+1 SD

-1 SD

Mean

 

Figure 2. Linear equating; new form harder than reference form. 

The first diagram shows the means and standard deviations of the raw scores on the new form 
and the reference form, in the target population. The second diagram shows the equating 
adjustment. The mean of the adjusted scores on the new form is equal to the mean of the raw 
scores on the reference form. The same is true for the score 1 standard deviation above the mean, 
for the score 1 standard deviation below the mean. And so on, for every possible score on the 
new form (and for the values in between the possible scores). If we plot a data point for each 
possible raw score, the data points will all lie on the slanting line.  

The definition of linear equating and the linear equating adjustment can be written simply as 
mathematical formulas. (These will be the only formulas in this booklet!) Here is the definition 
of linear equating, written as a formula: if X represents a score on the new form and Y represents 
a score on the reference form, then X and Y are equivalent in a group of test takers if  

)SD(
)mean(

)SD(
)mean(

X
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Y
YY −

=
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where the means and standard deviations are computed in that group of test takers. Solving this 
equation for the reference-form score Y will give us a formula for adjusting any given raw score 
X on the new form: 
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The adjusted scores on the new form will have the same mean and standard deviation as the raw 
scores on the reference form. 

Since the means and standard deviations in the group are constants (the same for all test takers), 
the linear equating adjustment consists simply of multiplying the test taker’s score on the new 
form by one number and adding another number. But when you apply the formula, if the new-
form raw score is a whole number, the adjusted score will almost never be a whole number. If 
the only possible raw scores on the test are whole numbers, the adjusted score will not be a score 
that is actually possible on the reference form. When we apply the raw-to-scale conversion for 
the reference form, we will have to interpolate. I call this problem the “discreteness problem” or 
the “in-between score problem.” The only kinds of tests for which we will not have this problem 
are tests on which any number in the score range can be a possible score.6  

Problems with linear equating 

Look again at the diagrams illustrating linear equating, in Figure 2. In the second diagram, notice 
that the equating line goes outside the range of scores possible on the reference form. The 
diagram implies that the highest raw scores on the new form are comparable to scores that are 
substantially higher than the highest score possible on the reference form! This is not a mistake 
in the diagram. It is a characteristic of linear equating. A very high or very low score on the new 
form can equate to a score outside the range of possible scores on the reference form. Suppose 
we are using a linear equating method to equate scores on two forms of a 100-question test. If the 
new form is harder than the reference form, the linear equating might indicate that a raw score of 
99 questions correct on the new form is comparable to a raw score of about 103 questions correct 
on the reference form. A raw score of 103 questions correct on a 100-question test is a difficult 
thing to explain. 

Another problem with linear equating is that the results can depend heavily on the group of test 
takers. When the two forms of the test differ in difficulty, the linear equating in a strong test-
taker group can differ noticeably from the linear equating in a weak test-taker group. Figure 3 
illustrates how this kind of thing happens.  

  

                                                      
6 There aren’t very many such tests. One example would be a test scored by measuring the time it takes the test taker 
to finish a task or a set of tasks. 
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The diagrams in Figure 3 illustrate the linear equating of the same two forms of a test in two 
different groups of test takers: a strong group and a weak group. In this hypothetical example, the 
new form is relatively hard, and the reference form is relatively easy. (In the diagrams, I have 
exaggerated these differences, to make it easier to see what is going on. In a real testing situation, 
the differences would not be so obvious.) 

The first diagram shows what happens when a strong group takes both forms. When the strong 
group takes the hard new form, the scores are widely spread out. But when the strong group 
takes the easy reference form, the scores are bunched together at the high end of the possible 
raw-score range. The equating line has a shallow slope. 

The second diagram shows what happens when a weak group takes both forms. When the weak 
group takes the hard new form, the scores are bunched together at the low end of the possible 
raw-score range. But when the weak group takes the easy reference form, the scores are widely 
spread out. The equating line will have a steep slope. 

To equate a harder new form to an easier reference form, we really need an equating adjustment 
that will have a shallow slope for the strong test takers and a steep slope for the weak test takers. 
But that will require a different type of equating, based on a different definition of “relative 
position.” 

Strong test-taker group

Reference
Form
(easier)

New Form (harder)

Spread of scores

Weak test-taker group

Reference
Form
(easier)

New Form (harder)

Equating line
Eq

ua
tin

g 
lin

e

 

Figure 3. Linear equating in a strong test-taker group and in a weak test-taker group. 
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Equipercentile Equating 

An even better way to define “relative position,” for the purpose of equating test scores, is in 
terms of percentile ranks:  

A score on the new form and a score on the reference form are equivalent  
in a group of test takers if they have the same percentile rank in the group.  

This definition implies the following procedure for adjusting the scores: 

To equate scores on the new form to scores on the reference form in  
a group of test takers, transform each score on the new form to the score  
on the reference form that has the same percentile rank in that group. 

This type of equating is called “equipercentile equating.”  

The diagrams in Figure 4 illustrate equipercentile equating in a situation where the new form is 
harder than the reference form. The first diagram shows the 10th, 25th, 50th, 75th, and 90th 
percentiles of the raw scores on the new form and on the reference form, in the target population. 
A hard form of the test will tend to spread out the scores of the strong test takers; the weak test 
takers’ scores will be bunched together at the bottom. Notice that on the hard new form, the 
higher percentiles are farther apart and the lower percentiles are closer together. An easy form of 
the test will tend to spread out the scores of the weak test takers; the strong test takers’ scores 
will be bunched together at the top. Notice that on the easy reference form, the lower percentiles 
are farther apart and the higher percentiles are closer together.  

Percentiles of raw scores on new form

Percentiles 
of raw 
scores on 
reference 
form

10th 25th 50th 75th 90th

90th

50th

75th

25th

10th

Percentiles of raw scores on new form

Percentiles 
of adjusted 
scores on 
new form

10th 25th 50th 75th 90th

90th

50th

75th

25th

10th

 

Figure 4. Equipercentile equating; new form harder than reference form. 

The second diagram in Figure 4 shows the equating adjustment. The 10th percentile of the 
adjusted scores on the new form is equal (as nearly as possible) to the 10th percentile of the raw 
scores on the reference form, in the target population, and likewise for the other percentiles. 
Every score on the new form is adjusted to be equal to the raw score on the reference form that 
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has the same percentile rank in the target population (as nearly as possible). If we plot a point for 
each possible raw score on the new form, with the height of the point indicating the adjusted 
score, the points will lie on the curve shown in the diagram. Notice that the adjusted scores on 
the new form are all within the range of scores possible on the reference form. Also notice that 
the slope of the curve is steep for lower scores (i.e., for the weaker test takers) and shallow for 
higher scores (i.e., for the stronger test takers). These variations in the slope make it possible for 
the equating relationship to apply to the weaker test takers and also to the stronger test takers. 

Equipercentile equating will make the adjusted scores on the new form have very nearly the same 
distribution as the scores on the reference form, in the target population. (I have to say “very 
nearly” because of the discreteness of the scores.) And, because the score distributions are very 
nearly the same, the means and the standard deviations in the target population will be very nearly 
the same for the adjusted scores on the new form as for the raw scores on the reference form. 

When will linear equating and equipercentile equating produce the same (or very nearly the 
same) results? When the distributions of scores on the new form and on the reference form in the 
target population have the same shape. In that case, a linear adjustment can make the adjusted 
scores on the new form have (very nearly) the same distribution as the raw scores on the 
reference form. And if the two distributions are the same, all their percentiles will be the same. 
Consequently, if the score distributions (in the target population) on the new form and the 
reference form have the same shape, the linear equating and the equipercentile equating will 
(very nearly) coincide. But if the score distributions for the new form and the reference form 
have different shapes, there is no linear adjustment to the scores on the new form that will make 
the score distribution the same (or even nearly the same) as the distribution of scores on the 
reference form. The adjustment resulting from equipercentile equating will not be linear. There is 
no simple mathematical formula for the equipercentile equating adjustment. 

A problem with equipercentile equating—and a solution 

The main problem with equipercentile equating is that the score distributions we actually see on 
real tests taken by real test takers are irregular. Figure 5 shows the distribution of the raw scores of 
468 test takers, on a real test of 39 multiple-choice questions. These 468 test takers were selected at 
random from the 8,426 test takers who took the test. Notice the irregularities in the score 
distribution. The percentage of the test takers with a given score does not change gradually as the 
scores increase; it fluctuates.  

Irregularities in the score distributions cause problems for equipercentile equating. They produce 
irregularities in the equipercentile equating adjustment, and those irregularities do not generalize 
to other groups of test takers. Figure 6 shows the distribution of the raw scores of 702 other test 
takers on the same test, selected at random from the same large group of 8,426 who took the test. 
Notice that the distributions in Figures 5 and 6 are similar in some ways, but not in others. The 
overall level of the scores, the extent to which they are spread out, and the general shape of the 
distribution are similar in the two distributions. But the irregularities in Figure 5 do not 
correspond to those in Figure 6. In general, the location, the spread, and the general shape of a 
score distribution will tend to generalize to other groups of test takers; the irregularities in the 
distribution will not.  
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Figure 5. Score distribution observed in a sample of 468 test takers. 

 

Figure 6. Score distribution observed in a sample of 702 test takers. 
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These graphs suggest a way to overcome the problem of irregularities: replace the observed score 
distribution with a distribution that has the same location, spread, and shape, but not the 
irregularities. The general name for this technique is “smoothing.” (When it is applied to score 
distributions before they are used to determine an equating relationship, some equating experts 
refer to it as “pre-smoothing.”) There are various ways of smoothing score distributions, and 
some of them work better than others. The most commonly used smoothing methods allow the 
user to make decisions that determine how strong the smoothing will be—how far the smoothed 
distribution will be permitted to depart from the observed distribution. If the smoothing is not 
strong enough, it will not remove the irregularities. If the smoothing is too strong, it will change 
the shape of the distribution.  

 At ETS, we use a method developed by ETS statisticians in the 1980s, called “loglinear 
smoothing.”7 Figure 7 shows a smoothed distribution produced by applying this method to the 
distribution shown in Figure 5—the score distribution in the sample of 468 test takers. You can 
see how the smoothed distribution in Figure 7 preserves the general shape of the observed 
distribution in Figure 5, while smoothing out the irregularities. But how well does it approximate 
the distribution in the population of 8,426 test takers that the 468 in the sample were randomly 
selected from? That distribution is shown in Figure 8. By comparing the population distribution 
in Figure 8 with the observed sample distribution in Figure 5 and the smoothed sample 
distribution in Figure 7, you can see how much the smoothed sample distribution improves on 
the observed sample distribution, as an estimate of the population distribution. 

How much does smoothing the distributions improve the accuracy of the equipercentile equating? It 
seems likely that the answer would depend on how smooth the observed distributions are 
already, before you do the smoothing. The smaller the numbers of test takers that the 
distributions are based on, the greater the benefit you can expect from smoothing. In the early 
1990s, we did a research study at ETS to investigate this question for equatings in which the 
distributions were computed from small samples of test takers (200, 100, 50, and 25).8 In that 
study, the improvement that resulted from smoothing the distributions before equating was about 
the same as the improvement that resulted from doubling the number of test takers in the 
samples.  

If you want to do equipercentile equating, and you don’t have a good way to smooth the score 
distributions, there is an alternative. You can perform an equipercentile equating based on the 
observed distributions, and then smooth the equating relationship. (Some equating experts refer 
to this approach as “post-smoothing.”)9 

                                                      
7This smoothing method allows the user to specify what features of the observed score distribution will be preserved 
in the smoothed distribution: the mean, standard deviation, skewness, etc. For the mathematics of this method, see 
Holland and Thayer (1987, 2000). For a review and comparison of several smoothing methods, see Kolen (1991). 
8 See Livingston (1993). 
9 Kolen and Brennan (2004, pp. 67–101) present and discuss presmoothing and post-smoothing methods. 
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Figure 7. Score distribution in sample of 468 test takers, smoothed. 

 

Figure 8. Score distribution observed in full group of 8,426 test takers. 
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A limitation of equipercentile equating 

One limitation of equipercentile equating is that the equating relationship cannot be determined 
for the parts of the score range above the highest score you observe and below the lowest score 
you observe. If you could observe the scores of the entire target population on both forms of the 
test, this limitation would not be a problem. In practice, it is not usually a problem for very low 
scores, because test users rarely need to discriminate at score levels below the lowest score observed. 
However, it can be a problem at high score levels on a difficult test, because some future test 
taker may get a raw score higher than the highest score in the data used for the equating. 

Smoothing can help solve this problem, because many smoothing methods will produce a 
smoothed distribution with nonzero probabilities (possibly very small, but not zero) at the 
highest and lowest score levels, even if no test takers actually attained those scores. However, at 
those very high and very low score levels, the equating relationship computed from the smoothed 
distributions will be based on scores that were not actually observed. 

Equipercentile equating and the discreteness problem 

I said earlier that one limitation of equating comes from the discreteness of the score scale. That 
limitation applies to any type of equating. For linear equating, the discreteness of the scale does 
not cause a problem in computing the adjustment—only in applying the adjustment after it is 
computed. But for equipercentile equating, the discreteness of the score scale causes a problem 
in computing the adjustment. Table 4 illustrates the problem. 

Table 4. Example of the Discreteness Problem in Equipercentile Equating 

New form Reference form 
Raw score Percentile rank Raw score Percentile rank 

52 78.07 52 68.96 
51 74.95 51 65.09 
50 71.64 50 61.12 
49 68.18 49 57.07 
48 64.60 48 52.99 
47 60.92 47 48.93 
46 57.18 46 44.93 
45 53.41 45 41.01 
44 49.65 44 37.23 
43 45.93 43 33.60 
42 42.28 42 30.15 
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This table shows the percentile ranks, in the same group of test takers, for part of the score range 
on two forms of a test. Let’s assume that this group is the target population for equating. A score 
of 45 on the new form has a percentile rank of 53.41. What score on the reference form has this 
percentile rank? There is no score that has that percentile rank. A score of 48 has a percentile 
rank of 52.99; a score of 49 has a percentile rank of 57.07. The equipercentile adjustment should 
adjust a score of 45 on the new form to a score somewhere between 48 and 49 on the reference 
form. The usual way to determine this score is by interpolation. Using interpolation, the adjusted 
score on the new form, for a raw score of 45, would be  

10.48)4849(
99.5207.57
99.5241.5348 =−

−
−

+ . 

Interpolation does not eliminate the problem inherent in the equipercentile definition of 
equating—that it is usually impossible to find a score on the reference form with exactly the 
same percentile rank as a given score on the new form.10 But interpolation provides a practical 
way to do equipercentile equating. The adjusted scores that it produces will have very nearly 
(although not exactly) the same mean, standard deviation, and skewness as the raw scores on the 
reference form.  

                                                      
10 This theoretical problem, and the fact that interpolation does not completely solve it, led Paul Holland to develop 
“kernel equating” (Holland & Thayer, 1989, pp. 1–6). A discussion of kernel equating would be beyond the scope of 
this introductory booklet. 



24 

Self-Test: Linear and Equipercentile Equating 

(The answers appear in a separate section in the back of this book.) 

For each statement, check “yes” or “no” to indicate whether or not the statement applies to 
each of these two types of equating. 

Its purpose is to adjust the scores for differences in the difficulty of the questions on the test. 

True of linear equating? (  ) yes (  ) no 

True of equipercentile equating?  (  ) yes (  ) no 

It requires data on the performance of people taking the test. 

True of linear equating?  (  ) yes (  ) no 

True of equipercentile equating?  (  ) yes (  ) no 

It produces an adjustment that is correct for every person in the target population. 

True of linear equating?  (  ) yes (  ) no 

True of equipercentile equating?  (  ) yes (  ) no 

The adjustment to the scores consists of multiplying by one number and then adding another. 

True of linear equating?  (  ) yes (  ) no 

True of equipercentile equating?  (  ) yes (  ) no 

The results can be improved by smoothing the score distributions before equating. 

True of linear equating?  (  ) yes (  ) no 

True of equipercentile equating?  (  ) yes (  ) no 

The adjusted scores on the new form will generally fall in between the scores that are actually 
possible on the reference form. 

True of linear equating?  (  ) yes (  ) no 

True of equipercentile equating?  (  ) yes (  ) no 

Some adjusted scores on the new form can be several points higher than the highest score 
possible on the reference form. 

True of linear equating?  (  ) yes (  ) no 

True of equipercentile equating?  (  ) yes (  ) no 

The adjusted score on the new form is the best prediction of the score the test taker would get on 
the reference form. 

True of linear equating?  (  ) yes (  ) no 

True of equipercentile equating?  (  ) yes (  ) no 
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Equating Designs 

An equating design is a plan for collecting the data you need for equating.  

Let’s indulge in a bit of wishful thinking. What information would we most like to have for 
equating the scores on two forms of a test? What we really want are two score distributions: the 
score distribution that would result if the entire target population took only the new form and the 
score distribution that would result if the entire target population took only the reference form.  

Now let’s get real. What kind of information can we get, in the real world, that will enable us to 
equate the scores on two forms of a test? We need some way to link the information about the 
new form to the information about the reference form. I know of three ways to get this kind of 
information: (1) We can get data on both forms from the same test takers. (2) We can get data on 
the two forms from two groups of test takers that we know to be equal in the skills measured by 
the test. (3) We can get some other relevant information about the test takers taking the different 
forms—ideally, another measure of the same skills that the test measures—and use that 
information as the basis for the adjustment.  

These three ways to link the two forms lead to five different equating designs. Each design has 
its advantages and limitations. And each design requires an assumption about what statistical 
relationships (that we can observe in the scores we collect) will generalize to the target 
population. 

Once you have the data you need for equating, you will need to analyze it. An equating method 
is a way of analyzing the data you have collected, to determine an equating relationship. An 
equating method can be either a linear method or an equipercentile method. (There are also other 
methods.) But you can do either linear equating or equipercentile equating with the data from 
any equating design. 

The single-group design 

The simplest equating design is to have the same test takers take both the new form and the 
reference form. This equating design is called the “single-group” design. The implicit 
assumption is that the equating relationship that we observe in this group of test takers will 
generalize to the target population. It is not necessary that the group of test takers be a 
representative sample of the target population. The group taking the test can be stronger than the 
target population, as long as the test takers are stronger to the same degree on the new form as on 
the reference form. Similarly, the group taking the test can be weaker than the target population, 
or more diverse, or less diverse—as long as the test takers differ from the target population in the 
same way on the new form as on the reference form. 

The main advantage of the single-group design is that, because the same test takers take both 
forms of the test, it is statistically powerful. In comparison to most other equating designs, it 
offers a highly accurate equating in relation to the number of test takers included in the design. 
Looking at it another way, it requires fewer test takers for a given level of accuracy.  
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The main disadvantage of the single-group design is that the test takers’ performance on the 
second form they take is likely to be affected by the experience of taking the first form. The 
single-group design is highly sensitive to order effects—practice effects or, in some cases, 
fatigue effects. Unless we are willing to assume that these effects are negligible, we can use the 
single-group design only if the test takers take both forms at the same time.  

But how can we ever have test takers take the new form and the reference form at the same time? 
One such situation occurs when we have to remove one or more questions from a test before re-
using it. (That can happen for a number of different reasons, including new knowledge in the 
subject tested or changes in the way the subject is taught.) In this situation, the new form is 
simply the reference form minus the questions that are being deleted. For equating, we use the 
data from a group of test takers who took the test before those questions were deleted. We 
compute two different scores for each test taker: a reference form score that includes the deleted 
questions and a new form score that excludes them. These scores are the basis for the equating.  

We can also use the single-group design when one or more questions are being added to a test. 
For equating, we use the data from a group of test takers who took the test with the new 
questions included. In this case, the new-form score would include the new questions; the 
reference-form score would exclude them. 

Another such situation occurs in constructed-response testing (essay tests, performance 
assessments, etc.). Sometimes the new form of the test contains exactly the same questions or 
problems as the reference form—the difference is in the scoring rules or procedure. In that case, 
we can equate the new-form scores to the reference-form scores by having a group of test takers’ 
responses scored twice. Since the questions are the same on both forms, these responses can 
come either from test takers taking the new form or from test takers taking the reference form (or 
both). The first scoring is done with the scoring rules and procedure used on the reference form; 
the second scoring is done with the scoring rules and procedure used on the new form. For each 
test taker, we compute a new form score, based on the ratings assigned with the new-form 
scoring rules and procedure, and a reference form score, based on the ratings assigned with the 
reference-form scoring rules and procedure. 

The counterbalanced design 

In the usual equating situation—two test forms that are really different forms, not just different 
versions of the same form—the problem of order effects makes the single-group equating design 
unsuitable. One way to overcome the problem is to divide the test takers into two groups and 
counterbalance the order in which the groups take the two forms. One group takes the new form 
first and the reference form second; the other group takes the reference form first and the new 
form second. The test takers have to take the two forms close together in time—close enough 
that there will be no real change in their level of the knowledge and skills that the test measures. 
Ideally, the two groups of test takers should be as similar as possible. (In practice, this design 
usually produces good results even if the groups differ somewhat, as long as the differences are 
not large.) With this equating design, it is best that the two forms not have any questions in 
common. 
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The key assumption of the counterbalanced design is that any order effects will balance out. 
When we use this design, we are assuming that the experience of taking the new form will affect 
performance on the reference form just as much as taking the reference form will affect 
performance on the new form. For this reason, it is wise to avoid having the two groups differ 
systematically in the abilities measured by the test. If the group taking the new form first is 
substantially stronger than the group taking the reference form first (or vice versa), there may be 
an order effect that does not balance out. 

As in the single-group design, the groups don’t have to be representative of the target population. 
They can be somewhat stronger or weaker or more diverse or less diverse. The information that 
we assume will generalize from these groups of test takers to the target population is the equating 
relationship between the two forms of the test. 

The main advantage of the counterbalanced design is the same as that of the single-group design: 
accurate results from a relatively small number of test takers. Its main disadvantage is that it can 
almost never be designed into an operational administration of a test. Usually, this equating 
design requires a special equating study for collecting the data.  

The equivalent-groups design 

In most equating situations, there is no opportunity to have the same test takers take two forms of 
the test. What can we do if each test taker will take only one form of the test? The simplest 
solution is to have a separate group of test takers take each form, making sure that the two 
groups are equal in the knowledge and skills that the test measures. Can we actually do that? We 
can never get the groups to be exactly equal, but if the number of test takers is large, we can 
come close. The best way to do it is by “spiraling the test forms.” That term is testing jargon for 
packaging the two forms of the test in alternating sequence: new form, reference form, new form, 
reference form, and so forth. This way of assigning test forms to test takers assures that the 
groups of test takers taking the two forms will be similar in many ways: where they took the test, 
when they took the test, what part of the testing room they sat in, and so on. If any of these 
differences are associated with differences in the test takers’ knowledge or skills, spiraling the 
test books will tend to balance out the differences. For example, the test takers at a particular 
testing site may be especially strong. Spiraling the test forms guarantees that the test takers at 
that testing site will be divided equally between the new form and the reference form.11 

The assumption of the equivalent-groups design is that the equating relationship observed 
between the two groups of test takers will generalize to the target population. The two groups 
may differ from the target population, as long as they both differ from the target population in 
the same way. If the group taking the new form is stronger than the target population, the group 
taking the reference form must also be stronger than the target population, to the same degree. 

The equivalent-groups design has some important practical advantages. It is fairly convenient to 
administer—provided that the people administering the test understand that they have to 
                                                      
11 An additional benefit—one that has nothing to do with equating—is that alternating the test forms makes it hard 
for a test taker to cheat by copying answers from the test taker at the next desk.  
 



28 

distribute the test booklets in the order in which they were packaged. It is even easier to 
implement if the test is administered by computer. Having the computer assign a test form to 
each test taker eliminates the risk that the person administering the test will not distribute the test 
booklets in the order in which they were packaged. This design can often be used in an 
operational test administration. It does not require the two forms of the test to have any questions 
in common, but it can be used even if they do. 

The equivalent-groups design also has some major limitations. Its main limitation is that in order 
to produce accurate equating results, it requires large numbers of test takers. In comparison to the 
counterbalanced design, the equivalent-groups design could require from 5 to 15 times as many 
test takers for the same degree of accuracy.12 A second limitation has to do with test security. In 
most cases, the reference form will have been administered previously. On some tests, there is a 
substantial risk that many test takers will have seen (and even studied) the questions on a test 
form that has been used previously. On those tests, it may be impossible to get valid equating 
data from an equivalent-groups design, because the reference-form raw-to-scale conversion will 
not be correct for test takers who have seen the questions in advance. 

The internal-anchor design 

In many large-scale testing programs, the testing is organized into “administrations.” Each 
administration is a short period of time (possibly a single day) in which a large number of test 
takers take the same test. Typically, all the test takers who take the test at a particular 
administration take the same form of the test. If that form of the test has not been given before, 
the scores will need to be equated to the scores on a reference form that was given at a previous 
administration. In this very common situation, we cannot assume that the groups of test takers 
taking the new form and the reference form are equal in the skills the test measures. To equate 
the scores, we need a link between those groups—some kind of information that will show us 
how the groups differ in the skills the test measures. In testing jargon, this link is called an 
“anchor.” 

  

                                                      
12 This comparison depends on the correlation between scores on the two test forms, because the accuracy of 
equating in a counterbalanced design depends on how strongly the two forms are correlated, while the accuracy of 
equating in an equivalent-groups design does not. The comparison is based on formulas from Angoff (1984, pp. 97, 
103). However, the formula for the equivalent-groups design (p. 97) assumes the groups to be independent random 
samples from the target population. Therefore, it may overestimate the number of test takers required when the 
groups are created by spiraling the test forms. 
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The best kind of an anchor for equating is a test of the same knowledge and skills that the test 
measures. The more similar the anchor is to the test, the better. The anchor can be either internal 
or external. An internal anchor is part of the test itself; an external anchor is not. An internal 
anchor consists of a set of questions from the reference form that have been included in the new 
form. These repeated questions are often called “common items,” and equating in an internal 
anchor design is often called “common-item” equating. Some other terms used to refer to the 
repeated questions are “anchor items” and “equating items.” Taken together, the repeated 
questions are sometimes referred to as the “equating set.” 

The main advantage of the internal-anchor design is that it does not complicate the 
administration of the test. However, it does complicate the test development process. It also 
requires a second exposure for the repeated questions, which can cause a security problem for 
some high-stakes tests. 

The key assumption of the internal-anchor design is that the meaning of the anchor score does 
not change. A given score on the anchor is assumed to indicate the same level of knowledge or 
skill for a test taker taking the new form as for a test taker taking the reference form. Therefore, 
the repeated questions must not change in difficulty. If the reference form has been released to 
test takers or to their teachers, any questions repeated from that form are likely to have become 
easier. If there has been a security breach on the reference form, the questions repeated from that 
form are likely to have become easier for at least some of the test takers. (In this case, it may be 
possible to identify the test takers who are likely to have had prior knowledge of the repeated 
questions and to exclude their scores from the equating analysis.) 

Sometimes, the difficulty of a repeated question can change as a result of circumstances.13 The 
knowledge needed to answer the question may become more commonly taught (or less 
commonly taught). Sometimes world events will bring the topic of a test question to the attention 
of the general public. For example, a question that uses the word “tsunami” will become much 
easier whenever a major, highly publicized tsunami occurs and for several months afterward. 
How can we take these possibilities into account? We modify our assumption. We assume that 
most of the repeated questions have not changed systematically in difficulty. This assumption 
makes it possible to identify those questions that have changed in difficulty and remove them 
from the anchor, by using difficulty plots.  

  

                                                      
13 The difficulty of a question can also change if the position of the question in the test changes, for example, from 
the end of the reference form to the middle of the new form. I’ll say more about this later. 
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Figure 9 is an example of a difficulty plot. Each data point in the plot represents one of the 
repeated questions. The horizontal position of the data point represents the percent-correct on the 
question for the test takers taking the new form. The vertical position of the point represents the 
percent-correct on the question for the test takers taking the reference form.14 These two difficulty 
measures agree strongly, as is usually the case. But occasionally we find one or more data points 
that do not fit the pattern. These outliers are the data points for questions that have become easier 
or more difficult in the new form than they were in the reference form. Notice, in the upper right 
corner of Figure 9, that there is one data point that seems to stand out from the rest. This data 
point represents a question that was answered correctly by nearly all the test takers taking the new 
form, but by only about three-quarters of those taking the reference form (even though the 
reference-form group did better than the new-form group on most of the other questions). Before 
we computed the anchor scores for equating these two forms, we removed this question from the 
anchor, treating it as if it had been a new question instead of a repeated question. 

 

Figure 9. Difficulty plot: percentage of test takers answering correctly in each group. 

                                                      
14 On some testing programs, the statisticians also look at a difficulty plot in which difficulty is measured by a 
statistic called delta, which is a nonlinear transformation of the percent-correct. The data points in this delta plot tend 
to form a straight line even when those in the percent-correct plot do not. However, the delta statistic exaggerates 
differences between the groups on very easy or very hard questions. The percent-correct plot is free of this 
distortion, and it also indicates more clearly the effect that removing a question from the anchor will have on the 
anchor scores.  
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The two main limitations of the internal-anchor design have to do with the possibility that the 
repeated questions may change in difficulty, between the reference form and the new form. First, 
we must be safe in assuming that most of the repeated questions will not change in difficulty. 
Second, we need enough repeated questions that if some of them do change in difficulty, we can 
identify those questions and remove them from the anchor. This second limitation makes the 
internal-anchor design unsuitable for equating a test that has only a small number of separate 
questions, problems, or tasks. Many essay tests and performance assessments fall into this 
category. For example, suppose that you needed to equate scores on a test consisting of only six 
separate problems. How many of those problems could you include in an internal anchor? Two, 
or possibly three at most. A difficulty plot with only two or three data points would not be very 
useful for determining whether any of those repeated problems had changed in difficulty.  

Sometimes it is necessary to use an internal anchor that does not measure all the skills that the 
full test measures. Suppose, for example, that we want to use an internal anchor design to equate 
scores on alternate forms of a test made up of 50 multiple-choice questions and one essay 
question. In this case, the internal anchor will consist entirely of multiple-choice questions. (The 
test developers will not want to use the same essay topic on all forms of the test!) Equating 
through the multiple-choice anchor requires the assumption that the groups taking the new form 
and the reference form differ just as much in the skills measured by the full test as in the skills 
measured by the multiple-choice portion alone. We make this assumption, not because we have a 
lot of confidence in it, but because the alternatives are worse. We have to report scores on the 
new form, one way or another. Whatever we do, we will be implicitly making an assumption 
about the skills of the test takers taking the new form and of those who took the reference form. 
We can assume the two groups are equal in the skills that the full test measures. Alternatively, 
we can assume that the difference between the groups is shown by their unadjusted raw scores on 
the full test. Or we can assume that the difference between the groups is shown by their scores on 
an internal anchor consisting of only multiple-choice questions—the same questions for both 
groups. Given these three choices, we generally prefer to believe the information from the 
multiple-choice anchor. 

The external-anchor design 

An external anchor is a common measure, separate from the test itself, that we can use to 
compare the group of test takers taking the new form with the group taking the reference form. 
Ideally, the external anchor should measure the same knowledge and skills as the test to be 
equated, using questions or problems in the same format, administered under the same 
conditions. In reality, we cannot often come close to this ideal. However, there is one well-
known test on which scores are equated through an external anchor design that meets these ideal 
conditions—the SAT Reasoning Test.  

Each form of the test includes a section that is not the same for all test takers. There are several 
versions of this section, spiraled among the test takers, so that the group of test takers taking each 
version is a representative sample of the full group of test takers for that administration. Some 
test takers get an additional Critical Reading section; some get an additional Math section; some 
get an additional Writing section. For some of the test takers, this section is an anchor that links 
the current form to a previous form. For others, it is an anchor that will link the current form to a 
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future form. Because the anchor is not taken by all the test takers, the scores on the anchor are 
not included in computing the individual scores on the test. The anchor scores are used only for 
equating. An equating plan of this complexity would be impractical for most other tests. 

A more typical example of equating through an external-anchor equating design is the equating 
of an essay test intended to measure the test takers’ writing skills. The anchor for equating scores 
on this test is a multiple-choice test, taken by the same test takers, which requires the test taker to 
distinguish between examples of well written and poorly written sentences. The scores on 
different forms of the multiple-choice test are equated through an internal anchor (common 
items), and then the adjusted scores on the multiple-choice test are used as an external anchor for 
equating scores on different forms of the essay test.  

More terminology. When we equate test scores, we often refer to the groups of test takers as 
“equating samples.” We call the group that took the new form the “new-form equating sample”; 
we call the group that took the reference form the “reference-form equating sample.” Calling the 
groups “samples” reminds us that we want the equating results to generalize beyond the people 
whose test responses we are using. However, we have to remember that the equating samples 
often are not representative samples from the target population. 

The key assumption of the external-anchor design is that the equating samples—the groups of 
test takers taking the two forms to be equated—will differ in the same way on the anchor as in 
the knowledge or skills measured by the test to be equated. In the writing-test example, the 
assumption is that the two equating samples will differ just as much in their ability to write good 
essays as in their ability to distinguish between well written and poorly written sentences. We do 
not have the data to test this assumption, but we can get some related evidence. We can compute 
the correlation between the (essay) test scores and the (multiple-choice) anchor scores, within 
each equating sample. If those correlations are strong, we will know that the anchor is a good 
indicator of the within-group differences between individual test takers in the knowledge or 
skills that the test measures. In that case, we will be more inclined to trust the anchor as an 
indicator of the between-group differences, that is, the differences between the equating samples.  

If the anchor for an external equating involves administering exactly the same questions to both 
equating samples, and if the anchor includes enough questions, it may be wise to use a difficulty 
plot to identify and remove from the anchor score any questions that changed in difficulty. 

Probably the main advantage of the external-anchor design is that it can be used in situations 
where other equating designs cannot be used. It is often used to equate scores on different forms 
of an essay test or a performance assessment. In these cases, the external anchor is usually the 
test taker’s equated score on a multiple-choice test measuring closely related knowledge and 
skills, as in the writing-test example described above. Another example involves a constructed-
response test in math. This test requires the test taker to construct mathematical proofs and to 
solve mathematical problems, showing the reasoning behind the solution. The external anchor 
for equating scores on this test is the adjusted score on a multiple-choice test that the test takers 
must also take, with questions drawn from the same areas of mathematics. 

The main disadvantage of the external-anchor design is the difficulty of finding a good external 
anchor. If the anchor measures different skills than the test to be equated, the equating samples 
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may differ more in the skills measured by the anchor than they do in the skills measured by the 
test—or vice versa. In that case, the key assumption of the external-anchor design will be 
violated, and the equating will be inaccurate.  

Table 5 summarizes the main advantages and limitations of these equating designs. 

Table 5. Advantages and Limitations of Equating Designs 

 Advantages Limitations 
Single group Accuracy with fewer test takers. Practice effect (except in special 

applications, e.g., to adjust for change in 
scoring). 
Requires special data collection (except 
in those special applications). 

Counter-
balanced 

Accuracy with fewer test takers. Usually requires special data collection. 

Equivalent 
groups 

Can use data from regular test 
administrations. 
Does not require common items or 
other anchor. 

Requires large number of test takers for 
accuracy. 
Requires special procedures for 
administration. 
Cannot use if reference form has been 
exposed. 

Internal 
anchor 

Can use data from regular test 
administrations. 
Requires only one test form at each 
administration. 

Requires specially constructed test forms. 
Cannot use if reference form has been 
exposed. 

External 
anchor 

Can use data from regular test 
administrations. 
Can use when reference form has been 
exposed. 

Often difficult to find anchor that 
measures same skills as test to be 
equated. 
If the skills differ, anchor may not reflect 
difference in skills tested.   
Anchor requires additional testing time. 
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Self-Test: Equating Designs 

(The answers appear in a separate section in the back of this book.) 

To answer the following questions, choose from the list of equating designs. Some questions have 
more than one answer. In some cases, the answer may be “none of these.” 

Which equating designs require the same test takers to take both forms of the test? 

(  ) single-group (  ) equivalent groups (  ) counterbalanced 

(  ) internal-anchor (  ) external-anchor (  ) none of these 

Which one equating design requires the largest number of test takers for an accurate equating? 

(  ) single-group (  ) equivalent groups (  ) counterbalanced 

(  ) internal-anchor (  ) external-anchor 

Which two equating designs will produce accurate results with the smallest number of test 
takers? 

(  ) single-group (  ) equivalent groups (  ) counterbalanced 

(  ) internal-anchor (  ) external-anchor 

For which one equating design is it most useful to spiral (alternate) the test forms among test 
takers? 

(  ) single-group (  ) equivalent groups (  ) counterbalanced 

(  ) internal-anchor (  ) external-anchor 

Which one equating design does not work well if the test has very few questions? 

(  ) single-group (  ) equivalent groups (  ) counterbalanced 

(  ) internal-anchor (  ) external-anchor 

Which one equating design is the best one to use when the two “forms” to be equated are just 
two different ways of scoring an essay test? 

(  ) single-group (  ) equivalent groups (  ) counterbalanced 

(  ) internal-anchor (  ) external-anchor 

Which equating designs can be used for equipercentile equating? 

(  ) single-group (  ) equivalent groups (  ) counterbalanced 

(  ) internal-anchor (  ) external-anchor 

Which equating designs make it possible to compute a difficulty adjustment that will be correct 
for every test taker taking the new form? 

(  ) single-group (  ) equivalent groups (  ) counterbalanced 

(  ) internal-anchor (  ) external-anchor (  ) none of these 
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Screening the Data 

It is generally a good idea to screen a data set before using it as the basis for any statistical 
procedure. Screening is the process that removes duplicate records, records that lack essential 
information, and other records that will cause the procedure to fail or to produce invalid results. 
In screening the data for anchor equating, it is wise to remove any records in which the test score 
and the anchor score are so different that they cannot both be valid indicators of the same test 
taker’s ability. Such records can occur for a number of reasons. The test taker may have been 
unable to finish the test (or the anchor, if it is an external anchor). The test taker may have had 
advance knowledge of the anchor items. The test score and the anchor score may not actually 
belong to the same test taker.  

Whatever the reason, if either the test score or the anchor score is not a valid indicator of the test 
taker’s ability in the subject, that test taker should not be in the equating sample. One way to 
identify test takers whose test scores and anchor scores are too different to be believed is to 
compute a statistic based on the difference between the test score and the anchor score. First, 
standardize the scores in the group of test takers, by subtracting the mean and dividing by the 
standard deviation. Then, for each test taker, compute the difference between the standardized 
test score and the standardized anchor score. If the size of the difference is larger than some 
specified amount, remove that test taker from the data set. Choose an amount large enough that a 
difference of that size (or larger) is unlikely to occur if both scores are valid.15 

The same kind of screening is also useful when the data come from a single-group design or a 
counterbalanced design. In that case, the comparison is between standardized scores on the two 
forms of the test. The screening is intended to identify (and remove from the equating 
calculations) any test taker whose scores on the two forms of the test are so different that they 
cannot both be valid.  

Selecting “Common Items” for an Internal Anchor 

I said earlier that using an internal-anchor design for equating complicates the test development 
process. If a new form of a test is to be equated through an internal anchor, the test developers 
may have to decide which form to use as the reference form, and they will surely have to decide 
which questions from the reference form to include in the new form.  

If there is more than one previous form of the test that could possibly serve as the reference 
form, the test developers have to choose one. The first requirement is that the questions on the 
reference form must not have been made available to future test takers—either officially or 
unofficially. If there have been changes in the content or format of the test, the reference form 
should be a form that is as similar as possible to the new form. It should be a form that has been 
administered to a fairly large number of test takers. The group of test takers who took the 
reference form should be fairly typical of the target population, with respect to any 
characteristics that may affect their responses to the questions. For example, if the target 
                                                      
15 One value I have used is 3 times the standard deviation of the difference between the standardized scores on the 
test and the anchor. When the critical value is chosen on the basis of this statistic, the stronger the correlation, the 
smaller the difference required to conclude that at least one of those scores is not valid. 
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population consists of students from many types of schools, the reference form should not be a 
form that was taken mainly by students at one particular type of school.  

Once the test developers have selected the reference form, they have to select the questions to 
include in the anchor—the common items. I have a list of guidelines that I give test developers to 
help them make these choices. The list begins with the guidelines that I consider most important: 

Include enough questions from the reference form. At ETS, we like an internal anchor to 
include at least 20 common items—more, if the test is longer than 100 questions. But we’re not 
rigid about this number. If the test contains only 35 questions, we probably wouldn’t include 20 
of them in an internal anchor. 

Choose a set of questions that resembles the full test in content and format. This guideline is 
important, because the anchor is supposed to reflect differences between the groups taking the 
new form and the reference form in the knowledge and skills that the test measures. Ideally, the 
internal anchor should be a shorter version of the full test, with the different types of content 
represented in the same proportion. 

Don’t include any questions that have been changed. A change in a test question is likely to 
make it easier or harder. Often, a test developer will want to change a question to prevent the test 
takers from misinterpreting it. That kind of change is usually a good thing, but not if the question 
is intended to be part of the anchor. If fewer test takers misinterpret the question, the question 
will become easier. It won’t accurately reflect the differences between the groups taking the 
reference form (containing the original version of the question) and the new form (containing the 
revised version). I tell the test developers, “If you have to change a question, take it out of the 
common-item equating set.”  

Try to avoid breaking up an item set. An item set is a group of questions based on a common 
stimulus: a reading passage, a description of an experiment, a picture, a graph, a map, a cartoon, 
or some such thing. If any questions from an item set are going to be included in the common-
item anchor, it is important to include the whole item set in the new form. The reason is that a test 
taker’s response to a question can be affected by the questions that come shortly before it in the 
test. However, it is not necessary to include the whole item set in the common-item anchor. 
Sometimes a test developer wants to use an item set as part of the anchor but also wants to 
change one of the questions. In that case, I tell the test developer to put the entire item set into 
the new form, but to include only the unchanged questions in the common-item anchor. 

Put each anchor item in approximately the same position in the new form as it was in the 
reference form. It is not necessary to give each anchor item exactly the same position in the new 
form that it had in the reference form, but it is best to avoid moving an anchor item to a much 
later position or a much earlier position. The test takers may respond differently to a question if it 
appears at a very different point in the test. 

The remaining guidelines are not as important, but they are still worth considering: 

Include questions that represent the full range of difficulty. If the anchor does not include 
enough difficult questions, it may not reflect the abilities of the strongest test takers. The 
equating may be inaccurate at the high end of the score range. Similarly, if the anchor does not 
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include enough easy questions, it may not reflect the abilities of the weakest test takers, and the 
equating may be inaccurate at the low end.16 

Don’t use questions at the end of the test as anchor items, unless the time limit is very 
generous. The problem here is that some of the test takers will be under time pressure when they 
get to these questions, and that time pressure can be different for test takers taking the new form 
than it was for those who took the reference form. For example, the new form may contain more 
time-consuming questions early in the test, leaving the test takers less time for the questions at 
the end. (Even if nearly all the test takers answer the last few questions on the test, their 
performance may be affected by the time limit. Many test takers may answer the last few 
questions incorrectly because they don’t have time to reason carefully and to consider all the 
possibilities.) I consider this guideline less important than the previous ones, because if this 
problem occurs we can often see it in the difficulty plots, identify the questions that are affected, 
and remove them from the anchor. Still, it is better not to have to remove questions from the 
anchor. 

Other things being equal, choose common items that correlate well with the total score. 
When our test developers select common items for an internal anchor, they look at statistics 
computed from the responses of the test takers who took the reference form. Questions that 
correlate more strongly with the total test score tend to provide more information about the 
relative strength of the groups taking the new form and the reference form. However, this is a 
low-priority guideline. It is not nearly as important as selecting a group of anchor items that 
represents the content and format of the full test.  

Scale Drift 

As you know by now, in the real world of testing, we don’t know the score distributions on both 
forms in the target population. We have to equate on the basis of the data we have, and the 
equating adjustments we compute from our data may not be quite correct for the target 
population. The difference between our equating results and the results we would get if we knew 
the distributions in the target population is called “equating error.”17 The equating error is 
usually not large enough to cause a problem; But even if the equating error is small, we could 
have a problem if it is repeatedly in the same direction.  

Suppose the equating of Form B to Form A makes the adjusted scores on Form B slightly too 
high. This small equating error may not matter—for comparing scores on Form B with scores on 
Form A. But suppose the equating of Form C to Form B also makes the adjusted scores on Form 
C slightly too high. Again, it may not matter—for comparing scores on Form C with scores on 
Form B. However, in a chain of several equatings, small equating errors in the same direction 
can accumulate, so that (for example), scaled scores on Form F will not be comparable to scaled 
scores on Form A. This phenomenon is called “scale drift.” 
                                                      
16 In the first edition of this booklet, this guideline was included in the “more important” list. However, some more 
recent research indicates that, at least for some kinds of tests, including easy questions and difficult questions in the 
anchor may not be as important as I (and most of my colleagues) thought. See the articles by Sinharay and Holland 
(2007) and by Liu et al. (2011). 
17 The use of the word “error” in this phrase does not mean that someone has made a mistake in equating the test 
scores. It means only that the results are not exactly correct for the target population.  
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The way to find out whether scale drift has occurred (and, if so, how much the scale has drifted) 
is to equate a recent form—one that is already on scale—directly to a reference form that is 
several steps back in the chain of equatings. In the previous example, we might equate Form F 
directly to Form A.  

Sometimes the pattern of equatings is a single chain, with each form equated to the one 
immediately before it. In this case, scale drift can affect comparisons over long time periods, but 
it will not be a problem for comparing the scores of test takers who took the test fairly close 
together in time. However, sometimes the pattern of equating is a pair of parallel chains, as 
illustrated in Figure 10. In this case, the two chains of test forms are called “equating strains.” In 
Figure 10, Forms B, D, and F are one equating strain; Forms C and E are another. The danger is 
that there may be scale drift in only one of the two equating strains. Even worse, there could be 
scale drift in both equating strains, in opposite directions. In that case, the scaled scores on two 
forms given close together in time (e.g., scaled scores on Forms E and F in Figure 10) may not 
be comparable.  

Form A

Form B
Form C

Form D
Form E

Form F
 

Figure 10. Equating strains. 
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The way to prevent this problem is illustrated in Figure 11. Form G is equated to both Form E 
and Form F, bringing the two equating strains together. If the results of the two equatings are 
similar, we can use either one or (more likely) average them. If the results of the two equatings 
differ substantially, we have to investigate (as best we can) the reason for the difference. Based 
on what we find, we may choose to disregard one of the two equatings and use only the other. 
For example, we might find that the equating of Form E to Form C was based on an unusual 
group of test takers. In that case, we might decide to disregard the equating of Form G to Form E 
and use only the equating of Form G to Form F. If we could not find any reason to trust one of 
the two equatings more than the other, we would probably average the results of the two 
equatings, to determine the raw-to-scale conversion for Form G. To average the results of the 
two equatings, we would simply average the two exact (unrounded) scaled scores corresponding 
to each raw score on Form G.18 

Form A

Form B
Form C

Form D
Form E

Form F

Form G
 

Figure 11. Equating strains brought together. 

  

                                                      
18 Mathematically, the results of this procedure are not quite symmetric. If you average the two raw-to-scale 
conversions and find the inverse of the resulting function, it will not be exactly equal to the function that you get if 
you find the inverses of the two separate raw-to-scale conversions and average them. In practice, the difference is 
negligible. 
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Constructed-Response Tests and Performance Assessments 

These tests present special problems in equating. Most constructed-response tests and 
performance assessments have one or more of the following characteristics: 

• A small number of tasks 
• A fairly small number of possible raw scores 
• Tasks that are easy to remember 
• A scoring process that requires judgment 

Each of these features will cause problems in equating the scores. 

Few tasks 

Many constructed-response tests include only three or four separate tasks. Some include only 
two, and some include only one! Having a small number of tasks makes it impossible—or, at the 
very least, extremely impractical—to use a common-item equating design. Even with two 
separate tasks in the anchor, if one of those tasks changed in difficulty, a difficulty plot would 
not show which one had changed. And even if you knew which task had changed in difficulty, 
removing it from the anchor would remove half the anchor!  

Few possible scores 

Many constructed-response tests and performance assessments have a small number of possible 
raw scores. For these tests, the discreteness of the scores is a problem. (See pages 14-15.) One 
possible solution is to report the scaled scores on a scale with the possible scores more closely 
spaced. For example, suppose each additional raw-score point is worth 2 scaled-score points, 
instead of just 1. Then rounding the scaled score up or down will have only half as large an 
effect. However, only half the scores in the scale will be possible on any given form of the test. 
As a result, the scaled scores will seem to be more precise than they really are.  

Advance knowledge 

In equating most tests, the options for choosing an equating design are limited if many test takers 
taking the new form are likely to have advance knowledge of the tasks, questions, or problems 
on the reference form. This problem is particularly acute for many constructed-response tests and 
performance assessments. In these kinds of tests, a test taker spends a substantial amount of time 
and effort on each task. After taking one of these tests, the test takers are more likely to 
remember the tasks long enough to tell the next group of test takers about them. On some 
constructed-response tests and performance assessments, advance knowledge of the specific 
tasks is not much of an advantage, but, on many others, advance knowledge of the tasks will 
make them much easier. If the current test takers have advance knowledge of the tasks on the 
reference form, that form will become easier, and its raw-to-scale conversion will no longer be 
correct. An equivalent-groups equating design will not work, because the final step of the 
equating process—the conversion of the equated scores to scaled scores—will not be correct.  
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Advance knowledge of the tasks also creates a problem for equating in the common-item 
equating design. If the test takers taking the new form have advance knowledge of the common 
items (and the test takers taking the reference form did not have that knowledge), the difficulty 
of the common items is likely to change. 

Judgment in scoring 

Most constructed-response tests and performance assessments have a scoring process that 
requires judgment. If the new form and the reference form are scored by different groups of 
scorers—or even by the same scorers at different times—the scoring standards can change. 
Testing organizations go to a lot of trouble to prevent such changes, by training the scorers 
carefully and monitoring their work. Nevertheless, changes in the effective scoring standards 
sometimes happen, and, when they do, they distort the equating of the scores.  

Reusing a form of a constructed-response test. The simplest case in which a change in the 
scoring standards can cause problems is that of reusing a form of a constructed-response test. On 
many constructed-response tests, forms are not reused, because of the problem of advance 
knowledge. However, there are constructed-response testing situations in which advance 
knowledge is not a problem. On some of these tests, few test takers have advance knowledge. On 
others, the questions are announced in advance, so that all the test takers have advance 
knowledge. And some tests consist of tasks on which advance knowledge is not much of an 
advantage. But even if the tasks do not change in difficulty because of advance knowledge, they 
will change in difficulty if the scoring standards change. And if the scoring standards change, the 
raw-to-scale conversion will be wrong.  

Fortunately, there is a way to find out whether the scoring standards have changed—and to 
adjust for any change that has happened. The way to do it is to use a rescoring sample. Select a 
sample of responses from the group that took the current test form when it was used previously. 
Have those responses scored by the current group of scorers. If possible, mix the responses from 
the rescoring sample in with the current responses, to make sure they are scored to the same 
standards as the current responses.19  

When the scoring is completed, you will have two sets of scores for the responses in the 
rescoring sample: a set of scores from the current scorers and a set of scores from the previous 
scorers. Compare the distributions of these two sets of scores. If the two distributions are 
essentially the same, you will know that the scoring standards have not changed. It would be 
unrealistic to expect each response in the rescoring sample to get the same score that it got in the 
previous scorings. However, if the scoring standards have not changed, differences in one 
direction will tend to be balanced by differences in the other direction, and the score distributions 
will not differ systematically.  

  

                                                      
19 Some people in testing refer to this procedure as “trend scoring.” I prefer the more general term “rescoring,” 
because this technique can be used to detect short-term fluctuations as well as long-term trends. 
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But what if the two score distributions for the rescoring sample are systematically different? 
What if the scores assigned by the current scorers are systematically higher? Or lower? Or more 
widely spread out? Or more closely bunched together? Then you will have evidence that the 
scoring standards have changed. You will need a new raw-to-scale conversion, but you will have 
the information you need to find that conversion. By getting two sets of scores for the rescoring 
sample, you have created a single-group equating design. You have two score distributions for 
the same responses, one from the current scoring and one from the previous scoring. You can use 
them to equate scores from the current scoring to scores from the previous scoring. Figure 12 
illustrates this procedure. 

 
 

Figure 12. Re-equating a constructed-response test form. 

Now let’s see how this same technique can be used to correct for changes in scoring standards 
when a new form of the test is being equated to a previously used reference form.  

Equating in an equivalent-groups design. Suppose you are using an equivalent-groups design 
to equate this year’s form of a constructed-response test to last year’s form of the test. Any 
change in the scoring standards, from last year to this year, will have the effect of changing the 
difficulty of tasks. You will need to find out whether the scoring standards for this year’s test 
takers were really the same as for last year’s test takers. If they were different, you will need a 
new raw-to-scale conversion for the reference form.  
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For the test takers assigned to take the reference form in the equivalent-groups design, this 
situation is the same as reusing a form of a constructed-response test, and the solution is the 
same. Select a rescoring sample from the group who took the reference form last year. Have their 
responses rescored, mixing them in with the responses of the group who took the reference form 
this year as part of the equivalent-groups design. Compare the two score distributions for the 
rescoring sample—from last year’s scoring and from this year’s rescoring. If these two score 
distributions for the same set of responses are systematically different, use them to equate the 
current scoring of the reference form to the previous scoring of the reference form. That equating 
will determine a new raw-to-scale conversion for the reference form—the conversion that is 
correct for the group taking it this year as part of the equivalent-groups design. When you have a 
correct conversion for the reference form, you can proceed with the equivalent-groups equating 
of the new form. Figure 13 illustrates this equating chain. 

 

Figure 13. Equating a constructed-response test in an equivalent-groups design. 

Equating with a constructed-response anchor. The basic assumption of equating in an anchor 
design is that the scores on the anchor have the same meaning for the group taking the new form 
as for the group taking the reference form. If the anchor (or a substantial proportion of the 
anchor) consists of constructed-response questions, it is important to detect and adjust for any 
change in the standards for scoring those questions. Whether the anchor is internal or external, a 
rescoring is necessary, but only for the constructed-response questions in the anchor.  
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Select a rescoring sample from the group that took the reference form. Have their responses to 
the constructed-response anchor items rescored, along with the responses to those items by the 
group that took the new form. The rescoring sample will be the reference-form sample for 
anchor equating. You will compute their anchor scores from the rescoring data, so that their 
anchor scores will be comparable to those of the new-form test takers. But in computing their 
scores on the reference form, you will use the original scoring, because that is the scoring for 
which the reference-form raw-to-scale conversion is correct. Figure 14 illustrates this equating 
design.  

 

Figure 14. Equating with a constructed-response anchor. 

What types and conditions of scoring increase the risk of a change in the effective scoring 
standards? A change in the scoring standards is much more likely if the scoring is holistic (i.e., 
the scorer assigns a rating that is a judgment of the entire response). It is less likely if the scoring 
is analytic (i.e., the scorer awards specified numbers of points for specified features of the 
response). A change in the scoring standards is most likely to occur when the pool of scorers 
changes, especially when there are many scorers who are scoring the test for the first time. Any 
change in the way the scorers are selected or trained increases the risk of a shift in the scoring 
standards. And, of course, any change in the scoring guide or scoring rules (the “rubric”) creates 
a danger that the standards will change. Although these conditions increase the danger, a change 
in the effective scoring standards can occur at any time, with any kind of scoring that requires 
judgment. The way to detect such a change, and to make the reported scores comparable if it 
occurs, is to use a rescoring sample.  
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Equating designs for constructed-response tests 

Let’s consider each of the five equating designs discussed earlier, as it applies to constructed-
response tests. 

The single-group equating design will work well ... 

• if the differences between the new form and the reference form are only in the scoring—
not in the tasks themselves or in the testing conditions. 

The counterbalanced equating design can work well with constructed-response tests ... 
• if you can actually get a sample of test takers who will take both forms, with no 

instruction or practice in between, and ... 
• if the difficulty of the reference form has not changed because of test takers’ advance 

knowledge of the tasks, and ... 
• if the scoring includes a rescoring sample of previous test takers who took the reference 

form, to check for changes in the scoring standards.  

The equivalent-groups equating design can work well with constructed-response tests ... 
• if you can get equating data for a large group of test takers, and ... 
• if the test forms can be spiraled (alternated) among those test takers or randomly assigned 

to the test takers, and ... 
• if the difficulty of the reference form has not changed because of test takers’ advance 

knowledge of the tasks, and ... 
• if the scoring includes a rescoring sample of previous test takers who took the reference 

form, to check for changes in the scoring standards. 

The internal anchor (common-item) equating design will not work well with most constructed-
response tests. However, it can work well ... 

• if the test contains many separate tasks—enough to allow for an anchor that includes 
several different tasks, and ... 

• if the difficulty of the tasks in the anchor has not changed because of test takers’ advance 
knowledge of those tasks, and ... 

• if the scoring of the common items includes a rescoring sample from the group that took 
the reference form, to check for changes in the scoring standards. 

The external anchor equating design can work well with constructed-response tests ...  
• if the anchor accurately indicates the difference between groups in the abilities that the 

constructed-response test measures (i.e., the difference between the group taking the new 
form and the group that took the reference form), and .... 

• if the difficulty of the anchor has not changed because of test takers’ advance knowledge 
of the tasks, and ... 

• if the scoring of any constructed-response tasks in the anchor includes a rescoring sample 
from the group that took the reference form, to check for changes in the scoring 
standards. 



46 

Tests That Include Multiple-Choice and Constructed-Response Questions 
Some tests include multiple-choice questions and constructed-response questions. In equating 
such a test through a common-item anchor, is it better to include constructed-response questions 
in the anchor or to use an anchor containing only multiple-choice questions? There is no single 
one-size-fits-all answer to this question. However, I can suggest some factors to consider in 
making this decision. Here is a short list of questions to think about: 

1. Are the constructed-response questions a substantial portion of the test?  
2. Do the constructed-response questions really measure different skills from the multiple-

choice questions?  
3. If so, is there a reasonable chance that the group taking the new form and the group 

taking the reference form could differ more on one set of skills than on the other? 
4. Is advance knowledge likely to affect the test takers’ performance on constructed-

response questions that have been used previously?  

If the answer to the first three questions is “yes” and the answer to the fourth question is “no,” it 
would be wise to include constructed-response questions in the equating anchor. But if the 
answer to the fourth question is “yes,” the information provided by constructed-response 
questions in the anchor is likely to be misleading. 

Difficulty plots with constructed-response questions. Recall that a difficulty plot is intended to 
show whether any of the anchor items have changed in difficulty. Including constructed-response 
questions in the anchor complicates this procedure, because of the partial-credit scoring used for 
nearly all constructed-response questions. Partial-credit scoring gives the test taker partial credit 
for a response that is partially correct. The possible scores are not limited to 1 for a correct 
answer and 0 for anything else. Instead, the possible scores can range from 0 to 2, or from 0 to 3, 
and so on. With partial-credit scoring, the difficulty of the question can change at some score 
levels and not others. For example, if the possible scores are 0, 1, and 2, it may become harder to 
get a score of 2, without becoming any harder to get a score of 1. How can you find out whether 
such a change has happened? And if it has happened, can you use the information from score 
levels where the difficulty has not changed, when you compute the anchor scores for equating? 

The solution to the problem is to use the scores on the constructed-response question to create 
threshold items. For example, if a constructed-response question has possible scores of 0, 1, 2, 3, 
and 4 ... 

Threshold item 1 asks, “Was the score on the question at least 1?” 
Threshold item 2 asks, “Was the score on the question at least 2?” 
Threshold item 3 asks, “Was the score on the question at least 3?” 
Threshold item 4 asks, “Was the score on the question at least 4?” 

Table 6 shows this example.  
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Table 6. Example of Threshold Items Formed From a Constructed-Response Question 

Score on  
constructed-response 

question 

Threshold item  Sum of scores on 
threshold items 1  2  3  4  

4  1  1  1  1  4  

3  1  1  1  0  3  

2  1  1  0  0  2  

1  1  0  0  0  1  

0  0  0  0  0  0  

The threshold items are created in the computer and added to the test taker’s data record. Notice 
that the sum of the scores on the threshold items is equal to the score on the constructed-response 
question. That fact makes it possible to compute the test taker’s anchor score by summing the 
scores on all the threshold items. 

When you make the difficulty plot, create a separate data point for each threshold item. Suppose 
that on a particular constructed-response question, it has become harder to get a score of 3 or 4, 
but not any harder to get a score of 1 or 2. If that has happened, the data points for threshold 
items 3 and 4 will stand out in the plot; the data points for threshold items 1 and 2 will not. You 
can then remove threshold items 3 and 4 from the anchor, without removing threshold items 1 
and 2. The anchor will make use of the information from score levels 1 and 2, where the 
difficulty of the question has not changed. It will not make use of the misleading information 
from score levels 3 and 4, where the difficulty of the question has changed. 

Threshold items have one additional advantage. They make it possible to create a difficulty plot 
that includes both multiple-choice and constructed-response questions. By including all the 
common items in the same plot, you can show more clearly how the new-form group and the 
reference-form group differ in their performance on the anchor. You can more easily see any 
data points that differ from the general pattern. 
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Self-Test: Equating Constructed-Response Tests 

(The answers appear in a separate section in the back of this book.) 

Questions 1 and 2 are based on the following situation:  

A constructed-response test is being administered for the second time, three years after it was 
administered for the first time. You are being asked to decide whether the raw-to-scale 
conversion from three years ago can be used for this year’s test papers. A sample of the test 
papers from three years ago was rescored along with this year’s test papers. This sample of test 
papers is the “rescoring sample.”  

1. Which of the following types of statistical information will you need for deciding whether the 
raw-to-scale conversion from three years ago can be used for this year’s test papers? Check all 
correct answers. 

(  ) The raw-to-scale conversion from three years ago. 
(  ) The distribution of the scores assigned three years ago to the papers in the rescoring sample.  
(  ) The distribution of the scores assigned three years ago to the group of all test papers from 
the previous administration. 
(  ) The distribution of the scores assigned this year to the rescoring sample. 
(  ) The distribution of the scores assigned this year to the group of all test papers from the 
current administration. 
(  ) The correlation, in the rescoring sample, of the scores from the original scoring three years 
ago with the scores from the rescoring this year. 

2. If you decide that the conversion from three years ago cannot be used this year, which of the 
following types of statistical information will you use to find a new conversion? Check all 
correct answers. 

(  ) The raw-to-scale conversion from three years ago. 
(  ) The distribution of the scores assigned three years ago to the papers in the rescoring sample.  
(  ) The distribution of the scores assigned three years ago to the group of all test papers from 
that administration. 
(  ) The distribution of the scores assigned this year to the rescoring sample. 
(  ) The distribution of the scores assigned this year to the group of all test papers from the 
current administration. 
(  ) The correlation, in the rescoring sample, of the scores from the original scoring three years 
ago with the scores from the rescoring this year. 

3. A test containing both multiple-choice and constructed-response items is being equated 
through a common-item anchor. The anchor contains 15 multiple-choice items and two 
constructed-response items, each scored on a scale of 0 to 4. How many data points will be in the 
difficulty plot?   
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The Standard Error of Equating 

Unless we know the score distribution on both the new form and the reference form in the entire 
target population, our equating results will be affected by sampling variability. For any given raw 
score on the new form, the adjusted score is a statistic computed from a sample of test takers. If 
it were computed from the scores of a different sample of test takers, its value could be different. 

Suppose we could repeat the equating a very large number of times, each time with different test 
takers taking the two forms—but the same numbers of test takers each time. We could then 
choose a particular raw score on the new form and compare the equated scores that resulted from 
all those replications of the equating process. Those equated scores might be similar, but they 
would not all be exactly the same, so we could compute their distribution. This distribution 
would be the sampling distribution of a statistic: the equated score for that particular raw score. 
The standard deviation of this sampling distribution would show how much the equating results 
vary from one sample of test takers to another. 

The standard deviation of the sampling distribution of the equated score has a name; we call it 
the “standard error of equating.” It is not a quantity that we can actually compute, but sometimes 
we can estimate it.20 The larger the samples of test takers included in the equating analysis, the 
smaller the standard error of equating will be. To be more precise, we really should call it the 
“conditional standard error of equating,” because the standard error of equating is different for 
different raw scores. In the middle of the score distribution, where most of the test takers’ scores 
are located, the standard error of equating tends to be small. At the high and low ends of the 
score distribution, where the data are sparse, the standard error of equating tends to be much 
larger. 

Methods for Equating Without an Anchor 

When the equating data come from a single-group design, a counterbalanced design, or an 
equivalent-groups design (anything but an anchor design), equating is relatively simple. When 
you use one of these equating designs, you are assuming that the equating relationship you 
observe in the samples will generalize to the target population. If you are doing linear equating, 
you use the means and standard deviations in the equating samples to compute the equating 
relationship, just as you would if you knew the means and standard deviations in the target 
population. By using the means and standard deviations that you observed in your data, you are 
not assuming that your equating samples are representative of the target population. You are 
making a much weaker assumption: that the equating relationship implied by those means and 
standard deviations is a good estimate of the equating relationship in the target population. The 
means and standard deviations in your equating samples can differ systematically from those in 
the target population, as long as they differ from the target population in the same way on both 
forms of the test. 

For equipercentile equating, the procedure is a bit more complex. Unless your equating samples 
are extremely large, you will need to include a smoothing step. If you have a good way to pre-

                                                      
20 See Kolen and Brennan (2004), Angoff (1984, pp. 97, 103, 106), and Liou and Cheng (1995). 
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smooth the score distributions—one that preserves their shape, while removing the 
irregularities—you should use it before you compute the equipercentile relationship. If you don’t 
have a good way to smooth the score distributions before equating, go ahead and compute the 
equipercentile equating from the observed score distributions, but then smooth the equating 
relationship that results. This procedure is often referred to as “post-smoothing.” What you want 
is a smoothing method that removes the irregularities, while preserving the shape and position of 
the equating curve. 

One problem that can arise with equipercentile equating is that of very sparse data—or no data at 
all—at the lower and upper ends of the score range. Linear equating will give you equated scores 
in this situation, although they may not make much sense (for example, an equated raw score of 
105 questions correct on a 100-question test). Equipercentile equating of pre-smoothed 
distributions can also produce some strange and implausible results where there are no data, if 
the smoothing method places data in those regions. Equipercentile equating without pre-
smoothing will leave the equated scores undetermined in those regions. If you need the raw-to-
scale conversion to be specified for these parts of the score scale, the best solution may be to 
extrapolate the equating relationship beyond the range of the scores in your data, in a way that 
produces plausible results. (This problem is not limited to equating without an anchor; it can also 
occur when you use an equipercentile equating method with data from an anchor equating 
design.) 

Methods for Equating in an Anchor Design 

Equating in an anchor design is more complex than equating in a single-group or equivalent-
groups design. It is not simply a matter of equating two score distributions from the same group 
of test takers, or from groups that are assumed to be equal in the knowledge and skills measured by 
the test. We need the anchor because we cannot assume that the groups taking the two different 
forms are equal in their knowledge and skills. Somehow, we have to use the information from 
the anchor score to adjust for the differences between the groups taking the new form and the 
reference form—the new-form equating sample and the reference-form equating sample. We 
have to assume that some kind of information we can compute in the equating samples will 
generalize to the target population. 
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Figure 15 is an illustration of the anchor equating problem. The figure contains four boxes. Each 
box refers to a particular form of the test and a particular group of test takers. The two boxes at 
the left refer to the new form; the two boxes at the right refer to the reference form. The box at 
the top refers to the new-form equating sample; the box in the middle refers to the reference-
form equating sample; and the two boxes at the bottom refer to the target population. 

Each box represents the scatterplot of a two-way score distribution—a plot of the test takers’ 
scores on the new form or the reference form and on the anchor. The horizontal axis represents 
the anchor score; the vertical axis represents the score on the new form or the reference form. If 
we had a large group of test takers taking both the test and the anchor, and we plotted a data 
point for each test taker, the data points would form a cloud with a roughly elliptical shape. That 
is what the ellipses shown in two of the boxes represent—the scatterplots of data that we can 
actually observe. The boxes representing the scatterplots for the target population are empty, 
because in most equating situations, we cannot observe the scores of the target population. 
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Figure 15. Equating in an anchor design. 
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In the situation pictured in Figure 15, the new-form equating sample has high scores on the 
anchor. Those high anchor scores indicate that this group is a strong group; But the scores of this 
strong group on the new form are not particularly high. Therefore, we can infer that the new 
form is difficult. The reference-form equating sample has much lower scores on the anchor. 
Those low anchor scores indicate that this group is a weak group; But the scores of this weak 
group on the reference form are not particularly low. Therefore, we can infer that the reference 
form is easy. An equating adjustment should compensate for the difference in the difficulty of 
the test forms, by adjusting any given score on the new form to a higher score on the reference 
form. I will use this same situation to illustrate each of the anchor equating methods, so you can 
see how each method leads to an adjustment in this direction. 

I should point out that, in Figure 15 (and in the figures that follow it), the differences in the 
abilities of the groups of test takers and in the difficulty of the test forms are much larger than we 
are likely to see in a real testing situation. I have exaggerated these differences to show clearly 
how each equating method works—how it makes (or, in some cases, fails to make) an 
appropriate adjustment to the scores. 

All methods of equating in an anchor design involve assumptions—explicit or implicit—about 
those two squares at the bottom of Figure 15. Each anchor equating method assumes that 
something about the squares with the ellipses will generalize to the empty squares below them. 
That is, each method assumes that something about the statistical relationship between scores on 
the new form and the anchor, in the group that actually took the new form, will generalize to the 
target population—and similarly for the reference form. The different anchor equating methods 
are different because they make different assumptions as to which aspects of the observed 
statistical relationship will generalize to the target population. 

Two ways to use the anchor scores 

Anchor equating methods can be classified into two types, according to the way they use the 
information from the anchor. Each of these types includes at least one method for linear equating 
and at least one method for equipercentile equating. 

The first approach to using the anchor scores is chained equating. It consists of equating the 
scores on the new form to scores on the anchor and then equating the scores on the anchor to scores on 
the reference form. The “chain” formed by these two equatings links the scores on the new form 
to scores on the reference form. Chained equating assumes that the statistical relationship that 
generalizes from each equating sample to the target population is an equating relationship.21 

  

                                                      
21 Many testing experts would argue that the term “equating” is not appropriate here, unless the test and the anchor 
measure the same knowledge and skills and produce equally reliable scores (which never happens). Those experts 
would insist that this relationship between test scores and anchor scores be described only as a “symmetric linking” 
although, mathematically and operationally, it is indistinguishable from an equating relationship.  
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The second approach to using the anchor scores is what I call “conditioning on the anchor.” It is 
the same technique that many statisticians call “post-stratification.” In this approach, we use the 
anchor score as if it were a predictor variable. For each possible score on the anchor, we estimate 
the distribution (or possibly just the mean and standard deviation) of scores on the new form and 
on the reference form in the target population. These estimates are then used for equating, as if 
they had actually been observed in the target population. This type of equating assumes that the 
relationship that generalizes from each equating sample to the target population is a conditional 
relationship. 

Table 7 illustrates this classification. We typically refer to the two chained equating methods 
simply as “chained linear” equating and “chained equipercentile” equating. The methods that 
condition on the anchor are “frequency estimation”—another descriptive term—and the 
“Tucker” and “Levine” methods. These two methods are named after the people who first 
proposed them, Ledyard Tucker and Richard Levine.22 

Table 7. Methods of Equating in an Anchor Design 

 Chained equating:  
Equate new form to anchor; 

equate anchor to reference form 

Conditioning on the anchor: 
Estimate score distributions (or  
 means and standard deviations)  

in target population 

Linear 
equating 

Chained linear method 
Tucker method, 
Levine method 

Equipercentile 
equating Chained equipercentile method Frequency estimation equipercentile 

method 

  

                                                      
22 I have occasionally heard chained equipercentile equating referred to as “Lindquist” equating. 
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Chained Equating 

The logic of chained equipercentile equating is illustrated in Figure 16. It is fairly straightforward. 
The relationship that is assumed to generalize from each equating sample to the target population 
is an equipercentile equating relationship.  

In Figure 16, the curved line in the upper left box represents the equipercentile equating 
relationship between scores on the new form and scores on the anchor. That curve is copied into 
the lower left box, because the equating relationship that it represents is assumed to generalize to 
the target population. Similarly, the curve in the middle right box represents the equipercentile 
equating relationship between scores on the reference form and on the anchor. That curve is 
copied into the lower right box, because the relationship is assumed to generalize to the target 
population. 

The arrows in the bottom row of boxes illustrate the equating of a score on the new form to the 
corresponding score on the reference form. In the lower left box, we start with a given score on 
the new form and find the corresponding score on the anchor. We then find that score on the 
anchor in the lower right box and find the corresponding score on the reference form, completing 
the chain. In Figure 16, you can see how this process causes the selected score on the difficult 
new form to adjust to a higher score on the easy reference form.  

 

Figure 16. Chained equipercentile equating. 
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The logic of chained linear equating is the same as that of chained equipercentile equating. The 
only difference is that the equating relationships that are assumed to generalize from each 
equating sample to the target population are linear equating relationships. Chained linear 
equating is illustrated in Figure 17. 

Although the logic is the same, chained linear equating is simpler to implement than chained 
equipercentile equating. You can use the basic linear equating formula to derive a formula for 
chained linear equating, by writing it twice and substituting one equation into the other. (Your 
notation will have to indicate which equating sample each mean or standard deviation refers to.) 
The result will be a simple formula that translates any score on the new form into the 
corresponding score on the reference form. However, when you insert a possible score on the 
new form into the formula, the solution will generally be a number that is not a possible score on 
the reference form. Usually, it will be a point in between two possible scores, but it could be a 
point outside the range of scores possible on the reference form. 
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Figure 17. Chained linear equating. 
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Conditioning on the Anchor: Frequency Estimation Equating 

The logic of equating by conditioning on the anchor is more complicated.23 It is easiest to 
explain in the context of frequency estimation equating because, although the operations are 
tedious, the logic is fairly straightforward. Figure 18 illustrates frequency estimation equating, in 
a situation where the scores on the new form and the reference form correlate strongly with the 
scores on the anchor. The statistical relationships that are assumed to generalize from each 
equating sample to the target population are conditional distributions: the distributions of scores 
on the new form and the reference form, computed separately for test takers with each particular 
score on the anchor. These conditional distributions are represented in Figure 18 by the short 
vertical lines. Those vertical lines in the upper boxes are copied into the lower boxes, because the 
conditional distributions are assumed to generalize to the target population.24  
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Figure 18. Frequency estimation equipercentile equating; test and  
anchor strongly correlated. 

                                                      
23 This type of equating is sometimes called “post-stratification equating”—“stratification,” because the anchor 
score is used to stratify each group of test takers; “post,” because we do not know which stratum (score category) 
each test taker is in until after the data have been collected.  
24 If the group that took the new form includes very few test takers with a particular score on the anchor (or none at 
all), we have a problem. A good way to solve the problem is to smooth the bivariate distribution of scores on the 
new form and the anchor. Loglinear smoothing (Holland & Thayer, 2000) solves the problem nicely. Without a 
good way to smooth the bivariate distribution, we would have to combine score levels on the anchor, to have an 
adequate number of test takers at each score level. 
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To do the equating, we need one additional piece of information: the distribution of scores on the 
anchor in the target population. How can we get that information? One way would be to define 
the target population by specifying a distribution of scores on the anchor. Another way would be 
to use the anchor scores of the new-form equating sample to estimate the anchor score 
distribution in the target population. A more general version of this approach is to combine the 
anchor score distributions of the two equating samples. If you take this approach, you can apply 
weights to the data, to represent the two equating samples in any desired proportion. That way, 
you can have a target population in which (for example) 75% of the test takers are like those in 
the new-form equating sample and 25% are like those in the reference-form equating sample. A 
target population generated in this way is called a “synthetic population.”  

Now let’s focus on the box in the lower left corner of Figure 18, representing the scores of the 
target population on the new form and on the anchor. Imagine a fine grid dividing the box into a 
matrix of tiny cells. The matrix has a row for each possible score on the new form and a column 
for each possible score on the anchor. This matrix refers to the target population, and we know 
the distribution of their anchor scores. Therefore, we know the proportion of the target 
population in each column of the matrix. We also know, for any column of the matrix, what 
proportion of the test takers are in each cell. This information comes from the conditional 
distributions that we are assuming to be the same in the target population as in the new-form 
equating sample. If we multiply these two proportions, we have an estimate of the proportion of 
the entire target population that is in the cell for that specific combination of scores on the anchor 
and the new form. We can write that proportion into the appropriate cell of the matrix. And we 
can do the same thing for all the other cells. When we have finished this operation, we will have 
a proportion written into each cell of the matrix. And these proportions, for the whole matrix, 
will sum to 1.00.  

Now we can specify a particular score on the new form and focus on its row of the matrix. If we 
sum the estimated proportions for all the cells in that row, we will have an estimate of the 
proportion of the target population who have that score on the new form. If we repeat this step 
for each score on the new form, we will have an estimate of the distribution of scores on the new 
form in the target population. 
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We can then apply exactly the same procedure to estimate the distribution of scores on the 
reference form, in the target population. And when we have estimated the score distributions on 
both the new form and the reference form, we can use those estimated distributions to do an 
equipercentile equating, as if we had actually observed the score distributions in the target 
population. 

I have tried to make the illustrations in Figure 18 show how frequency estimation equipercentile 
equating adjusts for the difference between the harder new form and the easier reference form. 
Looking at the lower left box of Figure 18, you can see that the test takers with low anchor 
scores are estimated to get very low scores on the difficult new form. Even the test takers with 
high scores on the anchor are estimated to get only moderately high scores on the new form. 
Therefore, the estimated distribution of scores on the new form in the target population will 
include many low scores and very few high scores. This distribution is shown at the left edge of 
the lower left box in Figure 18. 

Looking at the lower right box of Figure 18, you can see that the test takers with low scores on 
the anchor are estimated to get only moderately low scores on the easy reference form. The test 
takers with high scores on the anchor are estimated to get very high scores on the reference form. 
Therefore, the estimated distribution of scores on the reference form in the target population will 
include very few low scores and many high scores. This distribution is shown at the left edge of 
the lower right box in Figure 18. 

 Now look at the estimated distributions on the new form and the reference form in Figure 18. 
Choose a score on the new form and find its estimated percentile rank in the target population—
the proportion of the area below it in the score distribution estimated for the new form. Then find 
the score on the reference form that has the same percentile rank—the same proportion of the 
area below it in the score distribution estimated for the reference form. Notice that the score on 
the reference form is substantially higher. The equipercentile equating will compensate for the 
difference between the difficult new form and the easy reference form. 
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Frequency estimation equating when the correlations are weak 

Figure 19 illustrates frequency estimation equating in a situation where the anchor correlates 
weakly with the scores on the new form and the reference form. I have drawn Figure 19 as if the 
correlations were extremely weak, to make the illustration clear. The weaker the correlations, 
and the bigger the difference between the anchor scores of the two groups, the stronger the effect 
that I am trying to illustrate.  
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Figure 19. Frequency estimation equipercentile equating; test and  
anchor weakly correlated. 

As in all the previous examples, the new form equating sample is strong (their scores on the 
anchor are high), but the new form is difficult (the scores of this strong group on the new form 
are not particularly high). The reference form equating sample is weak (their scores on the 
anchor are low), but the reference form is easy (the scores of this weak group on the reference 
form are not particularly low). Because the new form is difficult and the reference form is easy, a 
given score on the new form should equate to a substantially higher score on the reference form. 

Now look at the vertical lines representing the conditional distributions in Figure 19. Because the 
correlations are weak, the vertical lines are longer than those in Figure 18, indicating that the 
conditional distributions are more spread out. And there is not as much difference between the 
conditional distributions for the test takers with low anchor scores and those with high anchor 
scores. On the difficult new form, the few test takers with low anchor scores do only slightly 
worse than those with high anchor scores. As a result, the new-form score distribution estimated 
for the target population is not much lower than that of the new-form equating sample. On the 
easy reference form, the few test takers with high anchor scores do only slightly better than those 
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with low anchor scores. As a result, the reference-form score distribution estimated for the target 
population is not much higher than that of the reference-form equating sample. 

Because of the weak correlations in the equating samples, the score distributions estimated for 
the target population on the difficult new form and on the easy reference form are not very 
different. Therefore, the equipercentile equating based on these distributions will make only a 
small adjustment, even though the new form is much harder than the reference form. Frequency 
estimation equipercentile equating in this situation will not adequately compensate for the 
difference in difficulty. 

This problem with frequency estimation equating occurs, to some extent, whenever the two 
equating samples differ in their scores on the anchor and the correlations of the test scores with 
the anchor scores are less than perfect. To the extent that the correlations depart from 1.00, 
frequency estimation equating will adjust as if the equating samples were more similar in ability 
than the anchor scores indicate. The result will be a biased estimate of the equating adjustment in 
the target population.25 The size of the bias will depend on how much the two equating samples 
differ in ability and how weak the correlations are. If the anchor score distributions of the two 
equating samples are not very different, or if the correlations between the test scores and the 
anchor scores are very high, the bias is small. In many cases, it is not large enough to worry 
about. But sometimes it is large enough to be cause for concern. 

This problem does not occur with chained equating, because the statistical relationships that are 
assumed to generalize to the target population in chained equating are not affected by the size of 
the correlation between the test scores and the anchor scores.  

Conditioning on the Anchor: Tucker Equating 

To do linear equating by conditioning on the anchor, it is not necessary to estimate the full 
distribution of scores on each form in the target population. All you need to estimate are the 
means and standard deviations in the target population. When you condition on the anchor for 
linear equating, you do not need to assume that the whole conditional distribution generalizes to 
the target population—only the conditional mean and standard deviation And you can simplify 
the problem further, by making some assumptions that are often made in other statistical 
applications. You can assume that in the target population,  

1. the conditional mean score on the new form (or the reference form) increases steadily 
(i.e., linearly) with scores on the anchor; and 

2. the conditional standard deviation is the same at all levels of the anchor score. 

  

                                                      
25 I am using the term “biased” the way statisticians use it, to mean that the expected value of an equated score 
estimated by this method differs systematically from the equated score in the target population. 
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Assumption 1 implies that you can use a simple formula to estimate the conditional means in the 
target population. Assumption 2 implies that you can estimate a single value for the conditional 
standard deviation. Tucker equating assumes that what generalizes from the new form sample to 
the target population are (1) the linear equation for estimating the conditional mean on the new 
form, for a given score on the anchor, and (2) the estimate of the conditional standard deviation 
of the scores on the new form, for any given score on the anchor. And it makes the corresponding 
assumptions for the reference form.26 

To estimate the mean and standard deviation of scores on the new form in the target population, 
you still need two more pieces of information: the mean and standard deviation of the anchor 
scores in the target population. As in frequency estimation, you can simply specify these values 
as a way of specifying the target population. Alternatively, you can assume that the new-form 
equating sample is a representative sample of the target population. Under this assumption, the 
mean and standard deviation of the anchor scores in the new-form equating sample will be 
estimates of those in the target population. Or you can specify a synthetic population that is a 
weighted combination of the equating samples. In this case, you can compute the mean and 
standard deviation of the anchor scores in the synthetic population from the means and standard 
deviations in the equating samples. 

When you have specified or estimated the mean and standard deviation of the anchor scores in 
the target population, you can derive formulas for estimating the mean and standard deviation of 
scores on the new form and on the reference form in the target population. (It takes quite a bit of 
algebra, and I don’t intend to go into it here.)27 And when you have formulas for estimating the 
means and standard deviations in the target population, for both the new form and the reference 
form, you can substitute the estimates into the basic formula for linear equating. The result will 
be a formula for Tucker equating.  

  

                                                      
26 If you have studied regression analysis, you will recognize the estimation formula in assumption 1 as a linear 
regression equation and the estimated conditional standard deviation in assumption 2 as the residual standard 
deviation. 
27 See Kolen and Brennan (2004, pp. 103–109). 
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Tucker equating is difficult to illustrate in a diagram like the ones I have used for chained 
equating and for frequency estimation equating. I will try to show how Tucker equating works 
for a test taker whose anchor score is at the mean of the target population. Figure 20 illustrates 
Tucker equating in a situation in which the anchor correlates strongly with the scores on the new 
form and the reference form. As in all the previous examples, the new-form equating sample is a 
strong group (high scores on the anchor), but the new form is difficult (the scores of this strong 
group are not particularly high). The reference-form equating sample is a weak group (low 
scores on the anchor), but the reference form is easy (the scores of this weak group are not 
particularly low). The equating should show a given score on the new form corresponding to a 
substantially higher score on the reference form. 

In the upper left box, the slanting line represents the equation for estimating the conditional mean 
on the new form, conditioning on the anchor score. Notice that the slanting line extends beyond 
the ellipse, mostly at the left (low anchor scores). Even though the new-form equating sample 
includes very few people with low anchor scores, the equation for estimating the conditional mean on 
the new form applies to the whole range of scores on the anchor. And notice that when the 
slanting line is extended into the range of low scores on the anchor, it gets quite low. Test takers 
with low scores on the anchor are estimated to get very low scores on the new form.  
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Figure 20. Tucker equating; test and anchor strongly correlated. 
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Similarly, in the upper right box, the slanting line represents the equation for estimating the 
conditional mean on the reference form, conditioning on the anchor score. Again, the slanting 
line extends beyond the ellipse, but now mostly at the right (high anchor scores). Even though 
the reference-form equating sample includes very few people with high anchor scores, the 
equation for estimating the conditional mean on the reference form applies to the whole range of 
scores on the anchor. And when the slanting line is extended into the range of high scores on the 
anchor, it gets quite high. Test takers with high scores on the anchor are estimated to get very 
high scores on the reference form. 

The equation for estimating the conditional mean score on the new form, for any given anchor 
score, is assumed to generalize to the target population. I have illustrated that assumption by 
copying the slanting line from the upper left box into the lower left box. In the lower left box, the 
vertical line indicates the mean anchor score of the target population. Look at the point where this 
vertical line intersects the slanting line. The height of that point indicates the conditional mean score 
on the new form, estimated for test takers whose anchor scores are at the mean of the target 
population. That new-form score is the estimated mean for the target population. 

Similarly, the slanting line from the middle right box (for the reference form equating sample) is 
copied into the lower right box (for the target population). In the lower right box, the vertical line 
indicates the mean anchor score of the target population. Look at the point where the vertical line 
intersects the slanting line. The height of that point indicates the conditional mean score on the 
reference form, estimated for test takers whose anchor scores are at the mean of the target 
population. That reference-form score is the estimated mean for the target population. 

Comparing the two boxes in the bottom row, notice that the estimated mean score of the target 
population is much higher on the reference form than on the new form. A linear equating based 
on these estimated mean scores will show the lower mean score on the difficult new form as 
being comparable to the higher mean score on the easy reference form. In this way, Tucker 
equating compensates for the difference in the difficulty of the two forms. 
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Tucker equating when the correlations are weak 

Figure 21 illustrates Tucker equating in a situation where the correlations between scores on the 
test and scores on the anchor are weak. I have drawn Figure 21 as if the correlations were 
extremely weak, to make the illustration clear. The weaker the correlations, and the bigger the 
difference between the anchor scores of the two groups, the stronger the effect that I am trying to 
illustrate. I have also added vertical lines in the upper two boxes, to indicate the mean score on 
the anchor in each equating sample. Notice that the mean anchor score is higher for the new-
form equating sample than for the reference-form equating sample—the vertical line is farther to 
the right. 

Looking at the box for the new-form equating sample, at the upper left, notice the shallow slope 
of the slanting line. The conditional mean score on the new form is not much lower for test 
takers with low anchor scores than for test takers with high anchor scores. Notice that when the 
slanting line is extended to the left, for low anchor scores, the conditional mean score on the new 
form drops only slightly. Now look what happens when this weak relationship is generalized to 
the target population. Even though the mean anchor score of the target population is noticeably 
lower than that of the new-form equating sample, the estimated mean score on the new form is 
not much lower in the target population than in the strong new-form equating sample. 
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Figure 21. Tucker equating; test and anchor weakly correlated. 
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Similarly, in the box for the reference-form equating sample, the line that estimates the 
conditional mean score on the reference form has a shallow slope. The conditional mean score on 
the reference form is not much higher for test takers with high anchor scores than that for test 
takers with low anchor scores. Notice that when the slanting line is extended to the right, for high 
anchor scores, the conditional mean score on the reference form increases only slightly. 

Again, this weak relationship gets generalized to the target population. Even though the mean 
anchor score of the target population is noticeably higher than that of the reference-form 
equating sample, the estimated mean score on the reference form is not much higher in the target 
population than in the weak reference-form equating sample. 

You can see, in the two boxes at the bottom of Figure 21, that in this situation, the estimated 
mean scores of the target population on the difficult new form and on the easy reference form do 
not differ very much. The equating adjustment will be small. It will not fully compensate for the 
difference in the difficulty of the two forms of the test.  

As with frequency estimation equating, this problem occurs, to some extent, whenever the 
anchor scores of the equating samples differ and the correlations of the test scores with the 
anchor scores are less than perfect. To the extent that the correlations depart from 1.00, Tucker 
equating will adjust as if the equating samples were more similar in ability than the anchor scores 
indicate. The result will be a biased estimate of the equating adjustment in the target population. 
The size of the bias will depend on how much the two equating samples differ in ability and how 
weak the correlations are. 

Notice that if the correlations were .00, the slanting lines that estimate the conditional mean 
scores on the new form and on the reference form would become horizontal. The estimated 
conditional mean on the new form, for any possible anchor score, would be the mean of the 
whole group taking the new form. Therefore, the target population’s estimated mean score on the 
new form would be the same as the mean score of the new-form equating sample. Similarly, the 
target population’s estimated mean score on the reference form would be the same as the mean 
score of the reference-form equating sample. In this situation—correlations of .00—Tucker 
equating would be the same as linear equating in an equivalent-groups design. 

Chained linear equating does not have this bias, because in chained equating, the relationships 
that are assumed to generalize to the target population are symmetric relationships. The slopes of 
the lines are not affected by the size of the correlations between the scores on the test and on the 
anchor.  
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Some people would argue that if the correlations between the test scores and anchor scores are 
weak, an equating adjustment should do what the Tucker equating method does—adjust as if the 
two equating samples were more similar in ability than the anchor scores imply. In effect, the 
Tucker method is saying, “To the extent that the anchor correlates with the test scores, I will use 
it to adjust for differences between the equating samples. To the extent that it does not, I will 
assume the equating samples to be equal in the knowledge or skill the test measures.” You can 
think of Tucker equating as a compromise between chained linear equating and a linear equating 
that assumes the equating samples to be of equal ability. When the anchor scores correlate 
perfectly with the test scores, the Tucker method becomes identical to the chained linear method. 
When the anchor scores are uncorrelated with the test scores, the Tucker method becomes 
identical to a linear equating based on the assumption of equivalent groups.  

This rationale makes sense—if the two equating samples can be considered to be random 
samples from the same population of test takers, and if the reason for the imperfect correlations 
between the anchor scores and test scores is that the anchor and the test measure different 
knowledge or skills. However, the two equating samples often are not random samples from the 
same population. For example, the test takers who take the test at a particular time of year may 
be stronger, on average, than those who take the test at another time of the year. And even if the 
anchor and the test measure the same skills, the correlations between test scores and anchor 
scores will be less than perfect, because the scores are not perfectly reliable. To the extent that 
the less-than-perfect correlations are caused by less-than-perfect reliability, the Tucker method 
will yield the wrong adjustment. 

Correcting for Imperfect Reliability: Levine Equating 

One way to remove the bias from Tucker equating, without abandoning the logic of the Tucker 
method, is to base the equating on the statistical relationships of “true scores” on the new form, 
the reference form, and the anchor. A test taker’s “true score” is the score the test taker would 
earn if the test were perfectly reliable. No individual test taker’s “true score” can ever be known, 
but it is possible to estimate statistical relationships involving “true scores” on the test and the 
anchor—the relationships that correspond to those used in Tucker equating. If you assume that 
these relationships of “true scores” generalize from the equating samples to the target population, 
you can get estimates of the means and standard deviations of scores on the new form and the 
reference form in the target population—estimates that are different from those in the Tucker 
method. This method based on “true scores” is called the Levine method.  

There are two versions of the Levine method, and a discussion of the difference between them is 
beyond the scope of this booklet.28 Both versions of the Levine method require good estimates of 
the reliability of the test scores and the anchor scores in the two equating samples.  

  

                                                      
28 For an explanation of the difference, see Kolen and Brennan (2004, pp. 109–118). 
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Choosing an Anchor Equating Method 

Which method of equating in an anchor design is best? Among people whose work includes the 
equating of test scores, there is still (as of 2014) no consensus on this question. I tend to prefer 
chained equating. (I would make an exception for an equating design in which the test forms are 
linked by an anchor and are also “spiraled” or randomly assigned to test takers.) Chained 
equating avoids the bias that results from conditioning on the anchor when the equating samples 
differ in ability and the anchor scores are not highly reliable. Some research that my colleagues 
and I have done29 has convinced me that this bias is real, predictable, and explainable. I also 
prefer equipercentile equating over linear equating, for three reasons: 

1. I think equipercentile equating is based on a better definition of “relative position in the 
group.”  

2. Equipercentile equating takes into account the possibility that the target population’s 
score distributions on the new form and on the reference form may have different shapes.  

3. Equipercentile equating avoids (or at least minimizes) the problem of out-of-range 
adjusted scores.  

For these reasons, I tend to prefer chained equipercentile equating. However, the chained 
equipercentile method does have some disadvantages and some limitations. It requires a good 
smoothing method. In the regions of the score scale where the data are sparse, one or two test 
takers can have an exaggerated effect on the equating. In regions of the score scale where there 
are no data (e.g., if no test takers have very high scores on the new form), the equating 
relationship cannot be determined.  

My colleagues and I often apply two or more equating methods to the same data and compare the 
results before deciding which method to use. Occasionally, we will use the results of one method 
in some parts of the raw-score range and the results of another method in other parts of the raw-
score range. Often, the choice of an equating method comes down to a question of what is 
believable, given what we know about the test and the population of test takers. 

                                                      
29 See Livingston, Dorans, and Wright (1990) and Sinharay and Holland (2010). 
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Self-Test: Anchor Equating 

Answer each question in a short phrase or sentence. 

A test developer is assembling a new form of a test that will be equated to a previous form by 
means of an internal anchor consisting of repeated questions (“common items”). The reference 
form included a set of four questions based on a particular reading passage, and the test 
developer wants to include those questions in the anchor. However, one of those questions has 
been changed. What should the test developer do?  

In chained equipercentile equating, what statistical relationship is assumed to generalize from the 
equating sample to the target population?  

In Tucker equating, what statistical relationship is assumed to generalize from the equating 
sample to the target population?  

Name an anchor equating method that equates the new form to the anchor in one group of test 
takers and equates the anchor to the reference form in another group of test takers.  

Name an anchor equating method that uses data from the anchor test to estimate the mean and 
standard deviation of the scores on each form in the target population. 

Name an anchor equating method that tends to give better results if the score distributions are 
smoothed before the method is applied. 

Name an anchor equating method that requires reliability estimates for the full test and the 
anchor.  

Name an anchor equating method that produces an equating conversion that is correct for every 
examinee in the new-form equating sample.  

Briefly describe the conditions under which the Tucker equating method is heavily biased.  



69 
 

 

References 

Angoff, W. H. (1984). Scales, norms, and equivalent scores. Princeton, NJ: Educational Testing 
Service. 

Holland, P. W., & Thayer, D. T. (1987). Notes on the use of loglinear models for fitting discrete 
probability distributions (Program Statistics Research Technical Report No. 87-79). 
Princeton, NJ: Educational Testing Service. 

Holland, P. W., & Thayer, D. T. (1989). The kernel method of equating score distributions 
(Program Statistics Research Technical Report No. 89-84). Princeton, NJ: Educational 
Testing Service. 

Holland, P. W., & Thayer, D. T. (2000). Univariate and bivariate loglinear models for discrete 
test score distributions. Journal of Educational and Behavioral Statistics, 25(2), 133–183. 

Kolen, M. J. (1991). Smoothing methods for estimating test score distributions. Journal of 
Educational Measurement, 28, 257–282. 

Kolen, M. J., & Brennan, R. L. (2004). Test equating, scaling, and linking: methods and 
practices (2nd ed.). New York, NY: Springer. 

Liou, M., & Cheng, P. E. (1995). Asymptotic standard error of equipercentile equating. Journal 
of Educational and Behavioral Statistics, 20(3), 259–286. 

Liu, J., Sinharay, S., Holland, P. W., Curley, E., & Feigenbaum, M. (2011). Test score equating 
using a mini-version anchor and a midi anchor: a case study using SAT data. Journal of 
Educational Measurement, 48, 361–379. 

Livingston, S. A. (1993). Small-sample equating with loglinear smoothing. Journal of 
Educational Measurement, 30, 23–39. 

Livingston, S. A., Dorans, N. J., & Wright, N. K. (1990). What combination of sampling and 
equating methods works best? Applied Measurement in Education, 3(1), 73–95. 

Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, 
NJ: Lawrence Erlbaum Associates. 

Sinharay, S., & Holland, P. W. (2007). Is it necessary to make anchor tests mini-versions of the 
tests being equated or can some restrictions be relaxed? Journal of Educational 
Measurement, 44, 249–275. 

Sinharay, S., & Holland, P. W. (2010). A new approach to comparing several equating methods 
in the context of the NEAT design. Journal of Educational Measurement, 47, 261–285. 



70 

Answers to Self-Tests 

Answers to self-test: Linear and equipercentile equating 

Its purpose is to adjust the scores for differences in the difficulty of the questions on the test. 

True of linear equating? Yes.    True of equipercentile equating? Yes. 

That’s what equating is all about.  
It requires data on the performance of people taking the test. 

True of linear equating? Yes.    True of equipercentile equating? Yes. 

Like any other statistical procedure, equating requires relevant data. 
It produces an adjustment that is correct for every person in the target population. 

True of linear equating? No.    True of equipercentile equating? No. 
It is not possible to make an adjustment that is correct for every individual. 

The adjustment to the scores consists of multiplying by one number and then adding another. 

True of linear equating? Yes.    True of equipercentile equating? No. 

This is what makes linear equating linear. 
The results can be improved by smoothing the score distributions before equating. 

True of linear equating? No.    True of equipercentile equating? Yes. 

There’s no need to smooth for linear equating, which uses only the means and standard 
deviations. 

The adjusted scores on the new form will generally fall in between the scores that are actually 
possible on the reference form. 

True of linear equating? Yes.    True of equipercentile equating? Yes. 

True of any kind of equating. 
Some adjusted scores on the new form can be several points higher than the highest score 
possible on the reference form. 

True of linear equating? Yes.    True of equipercentile equating? No. 

The 100th percentile cannot be more than one point higher than the highest possible score. 
The adjusted score on the new form is the best prediction of the score the test taker would get on 
the reference form. 

True of linear equating? No.     True of equipercentile equating? No. 
For a test taker whose score is above the mean, the best prediction is somewhat lower than 
the adjusted score. For a test taker whose score is below the mean, the best prediction is 
somewhat higher than the adjusted score. Equating is not the same as prediction. Prediction 
is not the same as equating. 
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Answers to self-test: Equating designs 

Which equating designs require the same test takers to take both forms of the test? 

Single-group and counterbalanced. 
Which one equating design requires the largest number of test takers for an accurate equating?  

Equivalent-groups. 
Which two equating designs will produce accurate results with the smallest number of test 
takers?  

Single-group and counterbalanced. Having the same test takers take both forms makes for a 
statistically powerful design.  

For which one equating design is it most useful to “spiral” (alternate) the test forms among test 
takers?  

Equivalent-groups. This design won’t work unless the groups are equal in ability. Spiraling 
the test forms is useful in the counterbalanced design, but it is more important in the 
equivalent-groups design. 

Which one equating design does not work well if the test has very few questions? 
Internal-anchor. The anchor scores would not be very reliable, and you would not be able to 
use a difficulty plot to determine whether any questions in the anchor had changed in 
difficulty.  

Which one equating design is the best one to use when the two “forms” to be equated are just 
two different ways of scoring an essay test?  

Single-group.  
Which equating designs can be used for equipercentile equating?  

All of them. 
Which equating designs make it possible to compute a difficulty adjustment that will be correct 
for every test taker taking the new form?  

None of them. It is not possible to make such an adjustment. 
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Answers to self-test: Equating constructed-response tests 

Questions 1 and 2 are based on the following situation:  

A constructed-response test is being administered for the second time, three years after it was 
administered for the first time. You are being asked to decide whether the raw-to-scale 
conversion from three years ago can be used for this year’s test papers. A sample of the test 
papers from three years ago was rescored along with this year’s test papers. This sample of test 
papers is the “rescoring sample.”  

1. Which of the following types of statistical information will you need for deciding whether the 
raw-to-scale conversion from three years ago can be used for this year’s test papers?  

• The distribution of the scores assigned three years ago to the papers in the rescoring 
sample.  

• The distribution of the scores assigned this year to the rescoring sample. 
Those distributions of scores for the same set of responses will tell you whether the scoring 
standards this year were meaningfully different from those of three years ago.  
2. If you decide that the conversion from three years ago cannot be used this year, which of the 
following types of statistical information will you use to find a new conversion? Check all 
correct answers. 

• The raw-to-scale conversion from three years ago. 
• The distribution of the scores assigned three years ago to the papers in the rescoring 

sample.  
• The distribution of the scores assigned this year to the rescoring sample. 

The two score distributions for the same set of responses give you a single-group equating 
design for equating the scores assigned this year to the scores assigned three years ago. The 
raw-to-scale conversion from three years ago is necessary to translate those equated scores to 
scaled scores.  
3. A test containing both multiple-choice and constructed-response items is being equated 
through a common-item anchor. The anchor contains 15 multiple-choice items and two 
constructed-response items, each scored on a scale of 0 to 4. How many data points will be in the 
difficulty plot?   
One data point for each multiple-choice anchor item, and 4 data points for each constructed-
response anchor item, for a total of 15 + 2(4) = 23 data points in the plot.  
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Answers to self-test: Anchor equating 

A test developer is assembling a new form of a test and wants to use a four-question item set as 
part of the anchor for common-item equating. However, one of the questions in the item set has 
been changed. What should the test developer do?  

Include the whole item set in the new form, but include only the three unchanged questions in 
the anchor score. 

In chained equipercentile equating, what statistical relationship is assumed to generalize from 
each equating sample to the target population?  

The equipercentile relationship between scores on the new form (or the reference form) and 
scores on the anchor. 

In Tucker equating, what statistical relationship is assumed to generalize from each equating 
sample to the target population?  

The equation that estimates the conditional mean score on the test (new form or reference 
form), for test takers with a given score on the anchor. Give yourself a bonus point if you 
remembered that the value of the conditional standard deviation is also assumed to 
generalize to the target population. 

Name an anchor equating method that equates the new form to the anchor in one group of test 
takers and equates the anchor to the reference form in another group of test takers.  

Chained linear equating or chained equipercentile equating. 

Name an anchor equating method that uses data from the anchor test to estimate the mean and 
standard deviation of the scores on the new form and the reference form in the target population.  

Tucker equating or Levine equating. (Frequency estimation equipercentile equating 
estimates the entire score distribution in the target population, so it might possibly be 
considered a correct answer.) 

Name an anchor equating method that tends to give better results if the score distributions are 
smoothed before the method is applied.  

Chained equipercentile equating or frequency estimation equipercentile equating. 

Name an anchor equating method that requires reliability estimates for the full test and the 
anchor.  

Levine equating. 

Name an anchor equating method that produces an equating conversion that is correct for every 
test taker in the new-form equating sample.  

There is no such method. 
Briefly describe the conditions under which the Tucker equating method is heavily biased.  

The equating samples differ greatly on the anchor, and the correlations between the test and 
the anchor are weak. (Alternatively: The equating samples differ greatly on the anchor, and 
the scores on the anchor are unreliable.) 




