

Research Memorandum ETS RM-13-01

Statistical Report of Fall 2009 CBAL™ Writing Tests

Jianbin Fu

Seunghee Chung

Maxwell Wise

February 2013

ETS Research Memorandum Series

EIGNOR EXECUTIVE EDITOR

James Carlson Principal Psychometrician

ASSOCIATE EDITORS

Beata Beigman Klebanov Gary Ockey
Research Scientist Research Scientist
Heather Buzick Donald Powers

Research Scientist Managing Principal Research Scientist

Brent Bridgeman Frank Rijmen

Distinguished Presidential Appointee Principal Research Scientist

Keelan Evanini John Sabatini

Research Scientist Managing Principal Research Scientist

Marna Golub-SmithMatthias von DavierPrincipal PsychometricianDirector, Research

Shelby Haberman Rebecca Zwick

Distinguished Presidential Appointee Distinguished Presidential Appointee

PRODUCTION EDITORS

Kim Fryer Ruth Greenwood

Manager, Editing Services Editor

Since its 1947 founding, ETS has conducted and disseminated scientific research to support its products and services, and to advance the measurement and education fields. In keeping with these goals, ETS is committed to making its research freely available to the professional community and to the general public. Published accounts of ETS research, including papers in the ETS Research Memorandum series, undergo a formal peer-review process by ETS staff to ensure that they meet established scientific and professional standards. All such ETS-conducted peer reviews are in addition to any reviews that outside organizations may provide as part of their own publication processes. Peer review notwithstanding, the positions expressed in the ETS Research Memorandum series and other published accounts of ETS research are those of the authors and not necessarily those of the Officers and Trustees of Educational Testing Service.

The Daniel Eignor Editorship is named in honor of Dr. Daniel R. Eignor, who from 2001 until 2011 served the Research and Development division as Editor for the ETS Research Report series. The Eignor Editorship has been created to recognize the pivotal leadership role that Dr. Eignor played in the research publication process at ETS.

Statistical Report of Fall 2009 $CBAL^{\rm TM}$ Writing Tests

Jianbin Fu, Seunghee Chung, and Maxwell Wise ETS, Princeton, New Jersey

As part of its nonprofit mission, ETS conducts and disseminates the results of research to advance quality and equity in education and assessment for the benefit of ETS's constituents and the field.

To obtain a PDF or a print copy of a report, please visit:

http://www.ets.org/research/contact.html

Action Editor: James Carlson

Reviewers: Lora Monfils and Rebecca Zwick

Copyright © 2013 by Educational Testing Service. All rights reserved.

ETS, the ETS logo, and LISTENING. LEARNING. LEADING., are registered trademarks of Educational Testing Service (ETS).

CBAL is a trademark of ETS.

Abstract

In the Cognitively Based Assessment *of, for, and as* Learning (*CBAL*TM) research initiative, innovative K–12 prototype tests based on cognitive competency models are developed. This report presents the statistical results of the 4 CBAL Grade 8 Writing tests administered to students in 12 states in fall 2009. Specifically, classical item statistics including rater reliabilities for human-scored items, item *p*+ values, item-total correlations, item missing response rates, differential item functioning (DIF), interscore correlations, and reliabilities of subscores and total scores are reported. Under item response theory, the tests are calibrated and scaled based on the generalized partial credit model. In addition, *t*-tests, multiple comparisons, and mixed models are used to examine the factors influencing test scores, including test form, test order, student, school, gender, and socioeconomic status. The results show that these 4 tests performed reasonably well.

Key words: CBAL, writing test, item analysis, item response theory, statistical report

Acknowledgments

Thanks to Randy Bennett, Jim Carlson, Rick Morgan, Lora Monfils, and Rebecca Zwick for their helpful suggestions and edits on early versions of this report. We are also grateful to Kim Fryer for her editorial assistance.

Table of Contents

	Page
Test and Sampling Designs	1
Classical Item Analyses	9
Rater Agreement for Human-Scored Items	9
Item Summary Statistics	
Differential Item Functioning (DIF)	22
Statistics for Subscores and Total Scores	23
Subscores and Total Scores	23
Lead-In Tasks and Essay	26
Item Response Theory (IRT) Item Calibration and Scaling	31
Concurrent Versus Separate Calibrations	32
Item Parameter and Theta Estimates	36
Analyses of Factors Affecting Test Scores	43
Subgroup Comparison	43
Mixed Model	45
Summary	48
References	50
Notes	52
List of Appendices	53

List of Tables

	Page
Table 1.	CBAL Writing Test Design2
Table 2.	Service Learning (PAA 1): Item and Subscore Information
Table 3.	Invasive Plant Species (PAA 2): Item and Subscore Information
Table 4.	Ban Ads (PAA 3): Item and Subscore Information
Table 5.	Mango Street (PAA 4): Item and Subscore Information
Table 6.	Test Sample Distribution by Demographic Characteristic
Table 7.	Writing Periodic Accountability Assessment (PAA) Sequences
Table 8.	School Group and Assigned Periodic Accountability Assessment (PAA) Sequences 11
Table 9.	Weighted Kappa Coefficient and Percentage of Agreement
Table 10.	Generalizability Coefficients for Item Rater D-Studies
Table 11.	Item Flag Definition
Table 12.	Service Learning (PAA 1): Item Statistics
Table 13.	Invasive Plant Species (PAA 2): Item Statistics
Table 14.	Ban Ads (PAA 3): Item Statistics
Table 15	Mango Street (PAA 4): Item Statistics
Table 16.	Category C Differential Item Functioning (DIF) Items
Table 17.	Service Learning (PAA 1): Test Subscore and Total Score Summary
	and Correlations 23
Table 18.	Invasive Plant Species (PAA 2): Test Subscore and Total Score Summary
	and Correlations
Table 19.	Ban Ads (PAA 3): Test Subscore and Total Score Summary and Correlations 24
Table 20.	Mango Street (PAA 4): Test Subscore and Total Score Summary and Correlations 25
Table 21.	Total Score Summary and Correlations
Table 22.	Correlations of the Four Writing Periodic Accountability Assessments (PAAs)
	With State Tests 27
Table 23.	Correlations Among Lead-In and Essay Raw Scores Across Four Periodic
	Accountability Assessments (PAAs)
Table 24.	Correlation Comparison Results Among Lead-In and Essay Across Four Periodic
	Accountability Assessments (PAAs)

Table 25.	Score Categories (SC) for Polytomous Items	33
Table 26.	Sample Sizes Used in Item Response Theory (IRT) Calibrations	34
Table 27.	Service Learning (PAA 1): Item Parameter Estimates and Standard Errors	37
Table 28.	Invasive Plant Species (PAA 2): Item Parameter Estimates and Standard Errors 3	38
Table 29.	Ban Ads (PAA 3): Item Parameter Estimates and Standard Errors	10
Table 30.	Mango Street (PAA 4): Item Parameter Estimates and Standard Errors	11
Table 31.	Subgroup Comparison on Each Periodic Accountability Assessment (PAA)	15
Table 32.	Race Subgroup Comparison on Each Periodic Accountability Assessment (PAA)	1 6
Table 33.	Mixed Model for Periodic Accountability Assessment (PAA) and Test	
	Order Effects	17
Table 34.	Mean and Standard Deviation of Theta Estimates by Test Order and Periodic	
	Accountability Assessment (PAA)	17
Table 35.	Mixed Model With Subgroup Comparisons	17

List of Figures

	ļ	Page
Figure 1.	Service Learning (PAA 1): scatter plots of lead-in subscores versus essay scores	
	with LOWESS regression lines.	28
Figure 2.	Invasive Plant Species (PAA 2): scatter plots of lead-in subscores versus essay	
	scores with LOWESS regression lines.	29
Figure 3.	Ban Ads (PAA 3): scatter plots of lead-in subscores versus essay scores with	
	LOWESS regression lines.	29
Figure 4.	Mango Street (PAA 4): scatter plots of lead-in subscores versus essay scores with	
	LOWESS regression lines.	30
Figure 5.	Comparison of item parameters between concurrent calibrations and separate	
	calibrations; the lines in the plots are diagonal lines.	35
Figure 6.	Comparison of EAP thetas between concurrent calibrations and separate	
	calibrations; the lines in the plots are diagonal lines.	36
Figure 7.	Test information curves based on EAP theta estimates	42
Figure 8.	Test characteristic curves based on EAP theta and EAP true score estimates	43
Figure 9.	EAP theta estimate distributions.	44

The Cognitively Based Assessment *of, for, and as* Learning (*CBAL*TM) research initiative is intended to create a model for an innovative K–12 assessment system that measures students' achievement after learning (of learning), provides timely feedback information for educational intervention (for learning), and is a worthwhile educational experience in and of itself (as learning; Bennett, 2010). To help achieve these goals, CBAL summative tests are intended to be administered multiple times across a school year and are referred to as periodic accountability assessments (PAAs). Aggregate scores across multiple tests are designed for possible uses for accountability purposes; however, in the current stage, CBAL is still a research project, and CBAL summative tests are not used as accountability assessments. CBAL tests are developed based on the underlying cognitive competency models that incorporate curriculum standards with results of learning sciences' research. The competency models describe skills that students need to learn and their interrelationships, for example, learning progressions (Deane, 2011; Graf, 2009; O'Reilly & Sheehan, 2009a, 2009b). Tests are administered online and include innovative technology-enhanced items that are typically organized under a common scenario and gauge higher-order critical-thinking abilities.

Four Grade 8 Writing PAAs were administered as described in the next section in the fall of 2009. This report presents the statistical results of the four Writing PAAs in that administration and includes the following content: (a) the test and sampling designs; (b) classic item analyses including rater reliabilities for human-scored items, item p+ values, item-total correlations, item missing response rates, and differential item functioning (DIF); (c) summary statistics of subscores and total raw scores including means, standard deviations, interscore correlations, and reliabilities; (d) the relationships among lead-in tasks and essays within and across PAAs; (e) results from concurrent calibration and separate calibration based on the generalized partial credit model; and (f) test performance by demographic groups based on gender, socioeconomic status, and race, as well as effects of PAA, test order, student, and school on test scores. Note that in another report, Fu, Wise, and Chung (2011) explored test dimensionality within each PAA.

Test and Sampling Designs

The fall 2009 field test included four PAAs focused on different writing genres: Service Learning, Invasive Plant Species, Ban Ads, and Mango Street. Each PAA had both dichotomous and polytomous items, and item types included constructed-response (CR), short CR, selected-

response (SR), and click and click (C&C; i.e., select and copy text from the passage as the answer and paste into the answer box). An item was either automatically scored by computer or human scored. (See Table 1 for the writing genre, the numbers of CR/SCR, SR/C&C items and subscores, respectively, and possible maximum total raw score for each PAA.)

Each PAA was based on a common scenario, and items in each PAA were organized under four tasks based on the nature of the questions. The first three tasks were lead-in tasks measuring critical thinking skills, which are necessary for writing a good essay on a specific genre, and the fourth task was writing an essay. The first three tasks comprised Test Section I and the fourth task was Test Section II. The PAAs were timed at the task level, and each section had to be finished in 50 minutes.

Tables 2 to 5 list the information for each item in the four PAAs, including item score ID, task, and subscore to which an item belongs, item sequence number, item type, scoring type (computer or human scored), score range after score weights were applied, and score weight. For the description of the test design from the content perspective, see Deane, Fowles, Baldwin, and Persky (2011) and Deane et al. (2009).

Table 1

CBAL Writing Test Design

PAA no.	PAA	Writing genre	Number of SR/C&C items	Number of CR/SCR items	Number of subscores	Max total score
1	Service Learning	Persuasive/applying criteria	22	3	4	60
2	Invasive Plant Species	Research-based expository writing	28	4	5	81
3	Ban Ads	Persuasive/argumentative writing	21	5	6	63
4	Mango Street	Writing about literature	10	4	4	41

Note. C&C = click & click, CR = constructed response, PAA = periodic accountability assessment, SCR = short CR, SR = selected response.

Table 2
Service Learning (PAA 1): Item and Subscore Information

Task number	Item	Item	Туре	Scoring	Score	Score	S1	S2	S3	S4
and name	sequence	score ID		type	range ^a	weight	D1			
1. Give feedback	1	W_SERVLEARN01	MC, C&C	A	0-1	1	1	-	-	-
	2	W_SERVLEARN02	MC, C&C	A	0-1	1	1	-	-	-
	3	W_SERVLEARN03	MC, C&C	A	0-1	1	1	-	-	-
	4	W_SERVLEARN04	MC, C&C	A	0-1	1	1	-	-	-
	5	W_SERVLEARN05	MC, C&C	A	0-1	1	1	-	-	-
	6	W_SERVLEARN06	MC, C&C	A	0-1	1	1	-	-	-
	7	W_SERVLEARN07	MC, C&C	A	0-1	1	1	-	-	-
2. Compare activities	8	W_SERVLEARN08H	MC, C&C	A	0-1	1	-	1	-	-
	9	W_SERVLEARN08G	MC, C&C	A	0-1	1	-	1	-	-
	10	W_SERVLEARN09H	MC, C&C	A	0-1	1	-	1	-	-
	11	W_SERVLEARN09G	MC, C&C	A	0-1	1	-	1	-	-
	12	W_SERVLEARN10H	MC, C&C	A	0-1	1	-	1	-	-
	13	W_SERVLEARN10G	MC, C&C	A	0-1	1	-	1	-	-
	14	W_SERVLEARN11H	MC, C&C	A	0-1	1	-	1	-	-
	15	W_SERVLEARN11G	MC, C&C	A	0-1	1	-	1	-	-
	16	W_SERVLEARN12H	MC, C&C	A	0-1	1	-	1	-	-
	17	W_SERVLEARN12G	MC, C&C	A	0-1	1	-	1	-	-
	18	W_SERVLEARN13H	MC, C&C	A	0-1	1	-	1	-	-
	19	W_SERVLEARN13G	MC, C&C	A	0-1	1	-	1	-	-
	20	W_SERVLEARN14H	MC, C&C	A	0-1	1	-	1	-	-
	21	W_SERVLEARN14G	MC, C&C	A	0-1	1	-	1	-	-
	22	W_SERVLEARN15	MC	A	0-1	1	-	1	-	-
3. Explain to a student	23	W_SERVLEARN16	CR	Н	0-8	2	-	-	1	-

 ω

Task number and name	Item sequence	Item score ID	Туре	Scoring type	Score range a	Score weight	S1	S2	S 3	S4
4. Write an essay	24	W_SERVLEARN17_I	CR	Н	0-15	3	-	-	-	1
	25	W_SERVLEARN17_III	CR	Н	0-15	3	-	-	-	1
		Number of items ^b			24	=	7	14	1	2
		Max. possible score b			59	-	7	14	8	30

Note. A = automatically scored by computer, C&C = click & click, CR = constructed response, H = human-scored, PAA = periodic accountability assessment, S1 = subscore for give feedback, S2 = subscore for compare, S3 = subscore for short evaluation, S4 = subscore for essay, SR = selected response.

Table 3

Invasive Plant Species (PAA 2): Item and Subscore Information

Task number and name	Item sequence	Item score ID	Type	Scoring type	Score range a	Score weight	S 1	S2	S 3	S4	S5
1. Gather and evaluate	1	W_INVASIVE_01_01	CR	Н	0-5	1	1	-	-	-	-
information	2	W_INVASIVE_01_02	SR	A	0-1	1	-	1	-	-	-
	3	W_INVASIVE_01_03	SR	A	0-1	1	-	1	-	-	-
	4	W_INVASIVE_01_04	SR	A	0-1	1	-	1	-	-	-
	5	W_INVASIVE_01_05	SR	A	0-1	1	-	1	-	-	-
	6	W_INVASIVE_01_06	SR	A	0-1	1	-	1	-	-	-
	7	W_INVASIVE_01_07	SR	A	0-1	1	-	1	-	-	-
	8	W_INVASIVE_01_08	SR	A	0-1	1	-	1	-	-	-
	9	W_INVASIVE_01_09	SR	A	0-1	1	-	1	-	-	-
	10	W_INVASIVE_01_10	SR	A	0-1	1	-	1	-	-	-
	11	W_INVASIVE_01_11	SR	A	0-1	1	-	1	-	-	-

^a Score range after score weights are applied. ^b Exclude W_SERVLEARN15 because of its zero item-total correlation; see Table 12.

Task number and name	Item sequence	Item score ID	Type	Scoring type	Score range ^a	Score weight	S1	S2	S3	S4	S5
	12	W_INVASIVE_01_12	SR	A	0-1	1	-	1	-	-	-
	13	W_INVASIVE_01_13	SR	A	0-1	1	-	1	-	-	-
2. Organize	14	W_INVASIVE_02_01	SR	A	0-1	1	-	-	1	-	-
information	15	W_INVASIVE_02_02	SR	A	0-1	1	-	-	1	-	-
	16	W_INVASIVE_02_03	SR	A	0-1	1	-	-	1	-	-
	17	W_INVASIVE_02_04	SR	A	0-1	1	-	-	1	-	-
	18	W_INVASIVE_02_05	SR	A	0-1	1	-	-	1	-	-
	19	W_INVASIVE_02_06	SR	A	0-1	1	-	-	1	-	-
	20	W_INVASIVE_02_07	SR	A	0-1	1	-	-	1	-	-
	21	W_INVASIVE_02_08	SR	A	0-1	1	-	-	1	-	-
	22	W_INVASIVE_02_09	SR	A	0-1	1	-	-	1	-	-
	23	W_INVASIVE_02_10	SR	A	0-1	1	-	-	1	-	-
	24	W_INVASIVE_02_11	SR	A	0-1	1	-	-	1	-	-
	25	W_INVASIVE_02_12	SR	A	0-1	1	-	-	1	-	-
	26	W_INVASIVE_02_13	SR	A	0-1	1	-	-	1	-	-
	27	W_INVASIVE_02_14	SR	A	0-1	1	-	-	1	-	-
	28	W_INVASIVE_02_15	SR	A	0-1	1	-	-	1	-	-
	29	W_INVASIVE_02_16	SR	A	0-1	1	-	-	1	-	-
3. Revise	30	W_INVASIVE_03_01	CR	Н	0-8	2	-	-	-	1	-
4. Write pamphlet	31	W_INVASIVE_04_02_I	CR	Н	0-20	4	-	-	-	-	1
section	32	W_INVASIVE_04_02_III	CR	Н	0-20	4	-	-	-	-	1
_	,	Number of items ^b			31	-	1	11	16	1	2
		Iax. possible score b			80	=	5	11	16	8	40

Note. A = automatically scored by computer, CR = constructed response, H = human-scored, S1 = subscore for guiding questions, S2 = subscore for evaluate sources, S3 = subscore for organize information, S4 = subscore for revision, S5 = subscore for write pamphlet, SR = selected response.

^a Score range after score weights are applied. ^b Exclude W_INVASIVE_01_12 because of its negative item-total correlation; see Table 13.

Table 4
Ban Ads (PAA 3): Item and Subscore Information

Task number and name	Item sequence	Item score ID	Type	Scoring type	Score range a	Score weight	S1	S2	S3	S4	S5	S 6
1. Read and summarize	1	W_BANADS_01A_01	SR	A	0-1	1	1	-	-	-	-	_
arguments	2	W_BANADS_01A_02	SR	A	0-1	1	1	-	-	-	-	-
	3	W_BANADS_01A_03	SR	A	0-1	1	1	-	-	-	-	-
	4	W_BANADS_01A_04	SR	A	0-1	1	1	-	-	-	-	-
	5	W_BANADS_01A_05	SR	A	0-1	1	1	-	-	-	-	-
	6	W_BANADS_01B	CR	Н	0-2	1	-	1	-	-	-	-
	7	W_BANADS_01C	CR	Н	0-2	1	-	1	-	-	-	-
2. Analyze arguments	8	W_BANADS_02AX_A	SR	A	0-1	1	-	-	1	-	-	-
	9	W_BANADS_02AX_B	SR	A	0-1	1	-	-	1	-	-	-
	10	W_BANADS_02AX_C	SR	A	0-1	1	-	-	1	-	-	-
	11	W_BANADS_02AX_D	SR	A	0-1	1	-	-	1	-	-	-
	12	W_BANADS_02AX_E	SR	A	0-1	1	-	-	1	-	-	-
	13	W_BANADS_02AX_F	SR	A	0-1	1	-	-	1	-	-	-
	14	W_BANADS_02AX_G	SR	A	0-1	1	-	-	1	-	-	-
	15	W_BANADS_02AX_H	SR	A	0-1	1	-	-	1	-	-	-
	16	W_BANADS_02AX_I	SR	A	0-1	1	-	-	1	-	-	-
	17	W_BANADS_02AX_J	SR	A	0-1	1	-	-	1	-	-	-
	18	W_BANADS_02BX_A	SR	A	0-1	1	-	-	-	1	-	-
	19	W_BANADS_02BX_B	SR	A	0-1	1	-	-	-	1	-	-
	20	W_BANADS_02BX_C	SR	A	0-1	1	-	-	-	1	-	-
	21	W_BANADS_02BX_D	SR	A	0-1	1	-	-	-	1	-	-
	22	W_BANADS_02BX_E	SR	A	0-1	1	-	-	-	1	-	-
	23	W_BANADS_02BX_F	SR	A	0-1	1	-	-	-	1	-	
3. Critique an argument	24	W_BANADS_03	CR	Н	0-8	2	-	-	-	-	1	-

6

Task number and name	Item sequence	Item score ID	Type	Scoring type	Score range a	Score weight	S1	S2	S3	S4	S5	S6
4. Write an essay	25 W_	BANADS_04_I	CR	Н	0-15	3	-	-	-	-	-	1
	26 W_	BANADS_04_III	CR	Н	0-15	3	-	-	-	-	-	1
	Numbe	er of items ^b			25	-	4	2	10	6	1	2
	Max. po	ssible score b			62	-	4	4	10	6	8	30

Note. A = automatically scored by computer, CR = constructed response, H = human-scored, PAA = periodic accountability assessment, S1 = subscore for summary feedback, S2 = subscore for CR summary, S3 = subscore for claims, S4 = subscore for evidence, S5 = subscore for critique, S6 = subscore for essay, SR = selected response.

Table 5

Mango Street (PAA 4): Item and Subscore Information

7

Task number and name	Item sequence	Item score ID	Type	Scoring type	Score range a	Score weight	S1	S2	S3	S4
1. Support	1	W_MANGO_01_01	C&C	A	0-1	.5	1	-	-	-
interpretations	2	W_MANGO_01_02	C&C	A	0-1	.5	1	-	-	-
of the story	3	W_MANGO_01_03	C&C	A	0-1	.5	1	-	-	-
	4	W_MANGO_01_04	C&C	A	0-1	.5	1	-	-	-
	5	W_MANGO_01_05	C&C	A	0-1	.5	1	-	-	-

^a Score range after score weights are applied. ^b Exclude W_BANADS_01A_01 because of its negative item-total correlation; see Table 14.

Task number and name	Item sequence	Item score ID	Type	Scoring type	Score range ^a	Score weight	S 1	S2	S 3	S4
2. Explain whether a character's attitude changes	6	W_MANGO_02_01	CR	Н	0-8	2	-	1	-	-
3. Help another student	7	W_MANGO_03_01	SR	A	0-1	1	-	-	1	-
interpret the text	8	W_MANGO_03_02	SR	A	0-1	1	-	-	1	-
	9	W_MANGO_03_03	SR	A	0-1	1	-	-	1	-
	10	W_MANGO_03_04	SR	A	0-1	1	-	-	1	-
	11	W_MANGO_03_05	SR	A	0-1	1	-	-	1	-
	12	W_MANGO_03_06	SCR	Н	0-3	1	-	-	1	-
4. Write an essay	13	W_MANGO_04_I	CR	Н	0-10	2	-	-	-	1
	14	W_MANGO_04_III	CR	Н	0-10	2	-	-	-	1
		Number of items			14	-	5	1	6	2
	N	lax. possible score			41	-	5	8	8	20

Note. A = automatically scored by computer, CR = constructed response, H = human-scored, PAA = periodic accountability assessment, S1 = subscore for support interpretation, S2 = subscore for interpretation, S3 = subscore for choose interpretation, S4 = subscore for essay, SR = selected response.

 \propto

^a Score range after score weights are applied.

The CBAL Writing PAAs were administered online to a convenience sample of 2,580 Grade 8 students from 21 schools in 12 states. (See Table 6 for the sample distribution by state, gender, socioeconomic status [SES] with low SES students defined as having reduced or free lunch, English language learner [ELL] status, and race.) The students took two PAAs out of the four in 1 of the 12 possible orders (see Table 7). For security reasons, a first PAA could not be used as a second PAA in the same school. To accommodate this restriction, the schools were randomly separated into six groups, each associated with four test sequences (see Table 8), and the students in a school group were randomly assigned to one of the four sequences. Ninety-three percent of students completed both PAAs within 1 month.

Classical Item Analyses

Rater Agreement for Human-Scored Items

According to Tables 2 to 5, each PAA had three to six human-scored items with a total of 16 for the four PAAs. Each of the 16 items was scored by two raters. The pairs of raters were not the same across items and students. A third rater would score an item if the difference between the first two raters' scores (before score weights were applied) was larger than one point (except for W_INVASIVE_01_01 which was a sum of the scores of five human-scored dichotomous responses). The raters were familiar with the CBAL writing tests. The adjudication rules for human-scored items were as follows:

- 1. If there are only two rating scores (the two-rater score difference is 0 or 1), average the two scores.
- 2. If there are three rating scores (hence the difference between the first two rater's scores is larger than 1), and the third score is closer to one score than the other, average Rater 3's score with the nearest score and discarded the other.
- 3. If there are three rating scores and the third score is at the middle point of the first two scores, average Rater 3's score with the other two.

In this section, the first two raters' scores were used to assess rater agreement. Students receiving any omit or not-reached rater score on a human-scored item were excluded from the analysis on this item.

Table 6

Test Sample Distribution by Demographic Characteristic

Demographic	N	%
State	-	-
Alabama	122	4.73
Arizona	573	22.21
Arkansas	290	11.24
California	64	2.48
Florida	41	1.59
Georgia	201	7.79
Kentucky	61	2.36
Louisiana	110	4.26
Massachusetts	106	4.11
Mississippi	99	3.84
Ohio	192	7.44
Texas	204	7.91
Unreported	517	20.04
Gender	-	-
Male	1,051	40.74
Female	1,010	39.15
Unreported	519	20.12
Low SES status	-	-
No	701	27.17
Yes	705	27.33
Unreported	1,174	45.50
ELL status	-	-
No	1,077	41.74
Yes	52	2.02
Unreported	1,451	56.24
Race	-	-
African American	374	14.50
Asian/Pacific Islander	58	2.25
Hispanic	196	7.60
Native American	10	.39
White	1,032	40.00
Unreported	910	35.27

Note. Many participant schools failed to fill in the background questionnaire; thus, a lot of demographic information was missing. ELL = English language learner, SES = socioeconomic status.

Table 7
Writing Periodic Accountability Assessment (PAA) Sequences

First PAA		Secon	d PAA	
FIIST PAA	PAA1	PAA2	PAA3	PAA4
Service Learning (PAA1)	-	1	2	3
Invasive Plant Species (PAA2)	4	-	5	6
Ban Ads (PAA3)	7	8	-	9
Mango Street (PAA4)	10	11	12	-

Table 8
School Group and Assigned Periodic Accountability Assessment (PAA) Sequences

School group	PAA sequences
Group 1	2, 3, 5, 6
Group 2	1, 3, 8, 9
Group 3	1, 2, 11, 12
Group 4	4, 6, 7, 9
Group 5	4, 5, 10, 12
Group 6	7, 8, 10, 11

Kappa coefficients and percentage agreement. Table 9 shows the weighted kappa coefficient for each human-scored item as a measure of interrater agreement between the first two raters, the sample size used in each kappa calculation, the asymptotic standard error (ASE) estimate of each weighted kappa coefficient, and the percentage of rater agreement. The weights used for the kappa calculations were the Fleiss-Cohen weights (commonly known as quadratic weights; Fleiss & Cohen, 1973). The quadratic weight for a pair of raters with score difference d was $1 - d_2 / k_2$, where k was the score difference between the highest score category and the lowest score category of an item. The quadratic weighting gives smaller weight to raters' scores having larger differences, ranging from 1 (same scores) to 0 (scores having the maximum possible difference), to represent the severity of disagreement. For dichotomous items, the weighted kappa coefficients were the same as the unweighted kappa coefficients. The weighted kappa coefficient in this case is equivalent to the intraclass correlation coefficient as demonstrated in Fleiss and Cohen. The weighted kappa coefficients were in the range of .62 to .89. One possible interpretation of kappa is as follows (Altman, 1991, p.404):

Poor agreement = less than .20

Fair agreement = .20 to .40

Moderate agreement = .40 to .60

Good agreement = .60 to .80

Very good agreement = .80 to 1.00.

Therefore, all the human-scored items showed good to very good agreement between the first two raters. The percentages of rater agreement ranged from 32% to 78%. Note that Item W_INVASIVE_01_01 was a sum of the scores of five human-scored dichotomous responses. Because rater score differences were cumulated this item had the lowest rater agreement of 32%.

Table 9
Weighted Kappa Coefficient and Percentage of Agreement

Human-scored item	Number of score categories	Sample size	Weighted kappa ^a	ASE of kappa	% of agreement
W_SERVLEARN16	5	1,187	.78	.01	61.92
W_SERVLEARN17_I	6	1,107	.79	.01	53.75
W_SERVLEARN17_III	6	1,104	.79	.01	58.79
W_INVASIVE_01_01	11	1,201	.79	.01	32.47
W_INVASIVE_03_01	5	1,202	.89	.01	67.55
W_INVASIVE_04_02_I	6	1,097	.63	.02	48.04
W_INVASIVE_04_02_III	6	1,100	.62	.02	50.45
W_BANADS_01B	3	1,155	.72	.02	76.36
W_BANADS_01C	3	1,096	.78	.01	78.47
W_BANADS_03	5	1,153	.84	.01	69.12
W_BANADS_04_I	6	1,047	.77	.01	55.01
W_BANADS_04_III	6	1,052	.85	.01	67.87
W_MANGO_02_01	5	1,209	.73	.01	59.47
W_MANGO_03_06	4	1,207	.73	.01	59.32
W_MANGO_04_I	6	1,109	.78	.01	54.46
W_MANGO_04_III	6	1,109	.83	.01	68.80

Note. ASE = asymptotic standard error.

^a Quadratic weights (Fleiss & Cohen, 1973).

Generalizability coefficients. Generalizability theory (Brennan, 2001; Shavelson & Webb, 1991) was used to estimate the rater reliabilities. Treating this as a G-study design, we had a balanced design with one facet (rater) and the object of measurement (students) where rater was nested within student. Based on the variance components from the G-studies, we estimated the generalizability coefficients for the following two D-studies (Crocker & Algina, 1986, pp. 157–171):

- 1. Each student was rated by one rater, and each student had a different rater;
- 2. Each student was rated by two raters, each student had different raters, and the final item score was the average of the two rater scores.

Note that the G-study and D-study used the same students. The data in the G-study was used to calculate the rater reliability for the scenario described in each D-study; no separate D-study was conducted. For the D-study where each student has different raters for a given item, the total number of raters is two times the number of students. Table 10 shows the generalizability coefficient estimates. The estimates for the one-rater model ranged from .63 to .89. One can see that compared to the one-rater design, averaging two raters' scores increased the generalizability coefficient estimates from .05 to .15 across all the human-scored items and doubled the accuracy of estimates, as indicated by the signal/noise ratios in Table 10.

Item Summary Statistics

Tables A1 to A4 in Appendix A list the item score frequencies including the frequencies for omit and not reached responses as well as system errors (i.e., the online testing system failed to capture a student's response) for the four PAAs, respectively. Tables 12 to 15 contain item summary statistics for the four PAAs, respectively, including the following statistics: sample size (N), mean, standard deviation, maximum possible score point, p+ value, item-total polyserial correlation, item-total Pearson correlation, percentage omit, percentage not reached, percentage system error, and percentage not responding (sum of percentages omit, not reached, and system error), as well as item flags, which as defined in Table 11, single out items with extreme item statistics to be reviewed. At the bottom of Tables 12 to 15, summary statistics across items including mean, standard deviation, minimum, and maximum are also provided. Note that unless explicitly specified, omit was treated as zero across the analyses in this study, while not reached

and system error were treated as missing, and a composite score including any missing item score was designated as missing.

Tables 12 to 15 show that the not responding rates were small (less than 5%), except for most items in Task 1 in Invasive Plant Species and W_BANADS_01C. In Task 1 in Invasive Plant Species, starting from the third item, W_INVASIVE_01_03, the not reached rate was 5.36% and increased to 16.42% for the final item, W_INVASIVE_01_13. This was due to speededness: In Task 1 in Invasive Plant Species, there were 15 minutes for 13 items, plus four directions screens and two different stimuli, one of which had four tabs of information.

Table 10

Generalizability Coefficients for Item Rater D-Studies

Item	Number of score	N	by one rater	ent was rated ; each student erent raters	by two rater	ent was rated s; each student erent raters
	categories	•	Gen. coef.	Signal/noise ratio	Gen. coef.	Signal/noise ratio
W_SERVLEARN16	5	1,187	.78	3.46	.87	6.92
W_SERVLEARN17_I	6	1,107	.79	3.68	.88	7.36
W_SERVLEARN17_III	6	1,104	.79	3.80	.88	7.59
W_INVASIVE_01_01	11	1,201	.78	3.63	.88	7.25
W_INVASIVE_03_01	5	1,202	.89	7.71	.94	15.43
W_INVASIVE_04_02_I	6	1,097	.63	1.72	.77	3.43
W_INVASIVE_04_02_III	6	1,100	.62	1.63	.77	3.26
W_BANADS_01B	3	1,155	.72	2.57	.84	5.14
W_BANADS_01C	3	1,096	.78	3.49	.87	6.99
W_BANADS_03	5	1,153	.84	5.33	.91	10.66
W_BANADS_04_I	6	1,047	.77	3.32	.87	6.65
W_BANADS_04_III	6	1,052	.85	5.48	.92	10.96
W_MANGO_02_01	5	1,209	.73	2.76	.85	5.53
W_MANGO_03_06	4	1,207	.73	2.72	.84	5.45
W_MANGO_04_I	6	1,109	.78	3.47	.87	6.95
W_MANGO_04_III	6	1,109	.83	4.95	.91	9.91

Note. Gen. coef = generalizability coefficient.

The correlation between an item score and the total score is used to indicate the association strength between an item and the construct (represented by total score) that it measures; this is closely related to test reliability. In this case, the polyserial correlation is

preferred to the ordinary Pearson correlation because the polyserial correlation more closely reflects the actual relationship between an ordinal variable and a continuous underlying variable, while the Pearson correlation tends to underestimate this relationship. The polyserial correlation assumes that the ordinal variable has an underlying standard normal distribution, and the two variables follow a bivariate normal distribution. Tables 12 to 15 provide both polyserial and Pearson item-total correlations because some polyserials did not converge, and for one item (W_INVASIVE_01_01), the polyserial did not exist as it had 21 score categories and was treated as a continuous variable by the LISREL program used to compute the polyserials. One can see that all polyserials were higher in absolute value than their Pearson correlation counterparts. All item-total correlations look reasonable except for three items: one in each of PAAs 1 to 3, W_SERVLEARN15, W_INVASIVE_01_12, and W_BANADS_01A_01, which had polyserial correlations of .00, -.25, and -.27, respectively, and thus were excluded from all the subsequent analyses and reports of summary item statistics. The mean item-total polyserial correlations for the four PAAs were .53, .49, .46, and .65, respectively.

Table 11

Item Flag Definition

Flag	Reasons for	Crite	erion
value	flagging	Dichotomous	Polytomous
A	Low average item score	<i>p</i> + < .25	p+<.30
Н	High average item score	p+ > .95	p+ > .70
R	Low item-total polyserial or Pearson correlation	Item-total polyserial correlation < .30 Item-total Pearson	Item-total polyserial correlation < .60 n correlation < .20
O	High percentage of omits	Percentage of om	its > 5%
N	High percentage of not reached	Percentage of not	reached > 5%
P	High percentage of not responding	Percentage of not	responding > 5%

For a dichotomous item, the p+ value refers to the proportion of correct responses and is the same as the mean, whereas for a polytomous item the p+ statistic is calculated as the ratio of the mean to the maximum possible score. The p+ values for PAAs 2 to 4 were between .19 and .87 with averages of .57, .58, and .54, respectively. PAA 1 was more difficult than PAAs 2 to 4 as its item p+ values were between .17 and .65 with an average of .37.

Table 12
Service Learning (PAA 1): Item Statistics

Item score ID	N	Mean	SD	Max possible score	p+	Polyserial $(N = 1,055)$	Pearson correlation $(N = 1,055)$	% omit	% not reached	% system error	% not respond	Flag
W_SERVLEARN01	1,193	.34	.47	1	.34	.59	.45	.00	.00	.00	.00	-
W_SERVLEARN02	1,190	.17	.38	1	.17	.33	.22	.00	.25	.00	.25	A
W_SERVLEARN03	1,186	.19	.39	1	.19	.29	.20	.00	.59	.00	.59	A R
W_SERVLEARN04	1,184	.42	.49	1	.42	.43	.34	.00	.75	.00	.75	-
W_SERVLEARN05	1,174	.23	.42	1	.23	.58	.42	.00	1.59	.00	1.59	A
W_SERVLEARN06	1,156	.21	.41	1	.21	.46	.32	.00	3.10	.00	3.10	A
W_SERVLEARN07	1,137	.44	.50	1	.44	.63	.50	.00	4.69	.00	4.69	-
W_SERVLEARN08H	1,192	.29	.45	1	.29	.41	.31	.00	.08	.00	.08	-
W_SERVLEARN08G	1,192	.49	.50	1	.49	.77	.61	.00	.08	.00	.08	-
W_SERVLEARN09H	1,191	.18	.38	1	.18	.13	.09	.00	.17	.00	.17	A R
W_SERVLEARN09G	1,191	.48	.50	1	.48	.57	.45	.00	.17	.00	.17	-
W_SERVLEARN10H	1,190	.20	.40	1	.20	.13	.09	.00	.25	.00	.25	A R
W_SERVLEARN10G	1,190	.24	.43	1	.24	.37	.27	.00	.25	.00	.25	A
W_SERVLEARN11H	1,189	.28	.45	1	.28	.14	.11	.00	.34	.00	.34	R
W_SERVLEARN11G	1,189	.54	.50	1	.54	.74	.59	.00	.34	.00	.34	-
W_SERVLEARN12H	1,186	.35	.48	1	.35	.52	.41	.00	.50	.08	.59	-
W_SERVLEARN12G	1,186	.24	.43	1	.24	.57	.42	.00	.50	.08	.59	A
W_SERVLEARN13H	1,187	.57	.49	1	.57	.65	.53	.00	.50	.00	.50	-
W_SERVLEARN13G	1,187	.64	.48	1	.64	.66	.52	.00	.50	.00	.50	-
W_SERVLEARN14H	1,187	.48	.50	1	.48	a	.56	.00	.50	.00	.50	-
W_SERVLEARN14G	1,187	.65	.48	1	.65	.59	.46	.00	.50	.00	.50	-
W_SERVLEARN15	1,185	.14	.34	1	.14	.00	.00	.17	.67	.00	.84	A R
W_SERVLEARN16	1,191	3.40	1.91	8	.43	.78	.77	.17	.17	.00	.34	-
W_SERVLEARN17_I	1,115	6.91	3.48	15	.46	.89	.89	.98	.18	.00	1.16	-
W_SERVLEARN17_III	1,115	6.09	3.19	15	.41	.88	.87	.98	.18	.00	1.16	-

16

Item score ID	N	Mean	SD	Max possible score	p+	Polyserial $(N = 1,055)$	Pearson correlation $(N = 1,055)$	% omit	% not reached	% system error	% not respond	Flag
Mean ^b	-	1.00	.75	2.46	.37	.53	.43	.09	.67	.01	.77	-
SD ^b	-	1.77	.83	4.03	.15	.22	.21	.27	1.05	.02	1.04	-
Min ^b	-	.17	.38	1.00	.17	.13	.09	.00	.00	.00	.00	-
Max ^b	-	6.91	3.48	15.00	.65	.89	.89	.98	4.69	.08	4.69	-

Note. See Table 11 for definition of flags. PAA = periodic accountability assessment.

Table 13
Invasive Plant Species (PAA 2): Item Statistics

Item score ID	N	Mean	SD	Max possible score	p+	Polyserial (N = 911)	Pearson correlation $(N = 911)$	% omit	% not reached	% system error	% not respond	Flag
W_INVASIVE_01_01	1,212	2.42	1.41	5	.48	a	.59	.83	.00	.00	.83	R
W_INVASIVE_01_02	1,173	.56	.50	1	.56	.52	.41	1.65	3.22	.00	4.87	-
W_INVASIVE_01_03	1,146	.45	.50	1	.45	.25	.20	.91	5.36	.08	6.35	RNP
W_INVASIVE_01_04	1,136	.84	.36	1	.84	.48	.29	.41	6.27	.00	6.68	NΡ
W_INVASIVE_01_05	1,130	.42	.49	1	.42	.14	.11	.91	6.77	.00	7.67	RNP
W_INVASIVE_01_06	1,116	.64	.48	1	.64	.16	.13	.33	7.92	.00	8.25	RNP
W_INVASIVE_01_07	1,110	.86	.34	1	.86	.41	.25	.83	8.42	.00	9.24	NΡ
W_INVASIVE_01_08	1,100	.82	.38	1	.82	.36	.23	1.49	9.24	.00	10.73	NΡ
W_INVASIVE_01_09	1,081	.55	.50	1	.55	.40	.31	.83	10.81	.00	11.63	NΡ
W_INVASIVE_01_10	1,067	.69	.46	1	.69	.21	.16	1.57	11.96	.00	13.53	RNP
W_INVASIVE_01_11	1,048	.80	.40	1	.80	.30	.21	.99	13.53	.00	14.52	NΡ
W_INVASIVE_01_12	1,033	.29	.45	1	.29	25	18	1.57	14.69	.08	16.34	RNP
W_INVASIVE_01_13	1,013	.51	.50	1	.51	.25	.20	1.65	16.42	.00	18.07	RNP
W_INVASIVE_02_01	1,208	.64	.48	1	.64	.77	.58	.00	.25	.08	.33	-
W_INVASIVE_02_02	1,209	.58	.49	1	.58	.51	.40	.08	.25	.00	.33	-

^a Item-total polyserial correlation did not converge. ^b Excluded W_SERVLEARN15.

Item score ID	N	Mean	SD	Max possible score	p+	Polyserial (N = 911)	Pearson correlation $(N = 911)$	% omit	% not reached	% system error	% not respond	Flag
W_INVASIVE_02_03	1,207	.39	.49	1	.39	.36	.28	.00	.41	.00	.41	-
W_INVASIVE_02_04	1,207	.56	.50	1	.56	.38	.30	.00	.41	.00	.41	-
W_INVASIVE_02_05	1,207	.19	.39	1	.19	.10	.07	.08	.41	.00	.50	A R
W_INVASIVE_02_06	1,206	.60	.49	1	.60	.61	.47	.00	.50	.00	.50	-
W_INVASIVE_02_07	1,206	.63	.48	1	.63	b	.58	.08	.50	.00	.58	-
W_INVASIVE_02_08	1,205	.69	.46	1	.69	.75	.55	.00	.58	.00	.58	-
W_INVASIVE_02_09	1,204	.55	.50	1	.55	.62	.48	.00	.58	.08	.66	-
W_INVASIVE_02_10	1,203	.58	.49	1	.58	.63	.50	.00	.58	.17	.74	-
W_INVASIVE_02_11	1,204	.67	.47	1	.67	.60	.45	.00	.58	.08	.66	-
W_INVASIVE_02_12	1,205	.36	.48	1	.36	.20	.15	.00	.58	.00	.58	R
W_INVASIVE_02_13	1,204	.60	.49	1	.60	.78	.60	.00	.58	.08	.66	-
W_INVASIVE_02_14	1,204	.68	.47	1	.68	.69	.52	.00	.58	.08	.66	-
W_INVASIVE_02_15	1,205	.56	.50	1	.56	.68	.54	.00	.58	.00	.58	-
W_INVASIVE_02_16	1,205	.67	.47	1	.67	.71	.53	.00	.58	.00	.58	-
W_INVASIVE_03_01	1,207	2.95	2.75	8	.37	.70	.68	.33	.41	.00	.74	-
W_INVASIVE_04_02_I	1,102	6.78	4.74	20	.34	.83	.82	.00	.09	.00	.09	-
W_INVASIVE_04_02_I	1,102	5.03	3.67	20	.25	.83	.81	.00	.09	.00	.09	A
Mean ^c	-	1.07	.81	2.58	.57	.49	.40	.42	3.50	.02	3.94	-
SD ^c	-	1.39	1.00	4.78	.16	.22	.20	.56	4.69	.04	5.14	-
Min ^c	-	.19	.34	1.00	.19	.10	.07	.00	.00	.00	.09	-
Max ^c	-	6.78	4.74	20.00	.86	.83	.82	1.65	16.42	.17	18.07	-

Note. See Table 11 for definition of flags.

^a This item score had 21 score categories and was treated as a continuous variable. ^b Item-total polyserial correlation did not converge.

^c Excluded W_INVASIVE_01_12.

Table 14

Ban Ads (PAA 3): Item Statistics

Item score ID	N	Mean	SD	Max possible score	p+	Polyserial $(N = 1,025)$	Pearson correlation $(N = 1,025)$	% omit	% not reached	% system error	% not respond	Flag
W_BANADS_01A_01	1,160	.62	.49	1	.62	27	21	.00	.00	.00	.00	R
W_BANADS_01A_02	1,159	.77	.42	1	.77	.39	.27	.00	.00	.09	.09	-
W_BANADS_01A_03	1,160	.58	.49	1	.58	.38	.30	.00	.00	.00	.00	-
W_BANADS_01A_04	1,160	.40	.49	1	.40	.14	.11	.00	.00	.00	.00	R
W_BANADS_01A_05	1,160	.78	.41	1	.78	.40	.28	.09	.00	.00	.09	-
W_BANADS_01B	1,159	.53	.62	2	.27	.70	.65	.34	.09	.00	.43	A
W_BANADS_01C	1,124	.76	.68	2	.38	.63	.60	2.33	3.10	.00	5.43	P
W_BANADS_02AX_A	1,158	.75	.43	1	.75	.46	.33	.00	.17	.00	.17	-
W_BANADS_02AX_B	1,158	.79	.41	1	.79	.42	.28	.00	.17	.00	.17	-
W_BANADS_02AX_C	1,158	.63	.48	1	.63	.22	.17	.00	.17	.00	.17	R
W_BANADS_02AX_D	1,158	.81	.40	1	.81	.56	.38	.00	.17	.00	.17	-
W_BANADS_02AX_E	1,158	.79	.41	1	.79	.54	.37	.00	.17	.00	.17	-
W_BANADS_02AX_F	1,158	.83	.38	1	.83	.43	.28	.00	.17	.00	.17	-
W_BANADS_02AX_G	1,158	.72	.45	1	.72	.35	.26	.00	.17	.00	.17	-
W_BANADS_02AX_H	1,158	.87	.33	1	.87	.53	.31	.00	.17	.00	.17	-
W_BANADS_02AX_I	1,158	.75	.43	1	.75	.52	.37	.00	.17	.00	.17	-
W_BANADS_02AX_J	1,158	.62	.49	1	.62	.44	.34	.00	.17	.00	.17	-
W_BANADS_02BX_A	1,157	.60	.49	1	.60	.15	.11	.17	.26	.00	.43	R
W_BANADS_02BX_B	1,157	.41	.49	1	.41	.26	.20	.26	.26	.00	.52	R
W_BANADS_02BX_C	1,157	.43	.50	1	.43	.37	.30	.26	.26	.00	.52	-
W_BANADS_02BX_D	1,157	.63	.48	1	.63	.39	.31	.26	.26	.00	.52	-
W_BANADS_02BX_E	1,157	.28	.45	1	.28	.22	.17	.34	.26	.00	.60	R
W_BANADS_02BX_F	1,157	.49	.50	1	.49	.43	.34	.34	.26	.00	.60	-
W_BANADS_03	1,155	1.93	2.09	8	.24	.79	.75	.00	.43	.00	.43	A
W_BANADS_04_I	1,056	6.08	3.44	15	.41	.92	.91	.19	.28	.00	.47	_

19

Item score ID	N	Mean	SD	Max possible score	p+	Polyserial $(N = 1,025)$	Pearson correlation $(N = 1,025)$	% omit	% not reached	% system error	% not respond	Flag
W_BANADS_04_III	1,056	5.76	3.30	15	.38	.90	.89	.19	.28	.00	.47	-
Mean ^a	-	1.12	.76	2.48	.58	.46	.37	.19	.30	.00	.49	-
SD ^a	-	1.45	.84	3.94	.20	.20	.21	.46	.58	.02	1.03	-
Min ^a	-	.28	.33	1.00	.24	.14	.11	.00	.00	.00	.00	-
Max ^a	-	6.08	3.44	15.00	.87	.92	.91	2.33	3.10	.09	5.43	-

Note. See Table 11 for definition of flags.

Item score ID	N	Mean	SD	Max possible score	p+	Polyserial $(N = 1,067)$	Pearson correlation $(N = 1,067)$	% omit	% not reached	% system error	% not respond	Flag
W_MANGO_01_01	1,213	.34	.46	1	.34	.56	.44	.00	.00	.00	.00	R
W_MANGO_01_02	1,205	.59	.47	1	.59	.67	.56	.00	.66	.00	.66	-
W_MANGO_01_03	1,195	.65	.47	1	.65	.39	.31	.00	1.48	.00	1.48	R
W_MANGO_01_04	1,178	.70	.46	1	.70	.67	.51	.00	2.89	.00	2.89	-
W_MANGO_01_05	1,165	.42	.48	1	.42	.70	.57	.00	3.96	.00	3.96	-
W_MANGO_02_01	1,211	3.63	1.79	8	.45	.79	.77	.00	.16	.00	.16	-
W_MANGO_03_01	1,210	.67	.47	1	.67	.50	.38	.00	.25	.00	.25	-
W_MANGO_03_02	1,209	.70	.46	1	.70	.73	.55	.00	.33	.00	.33	-
W_MANGO_03_03	1,209	.55	.50	1	.55	.56	.44	.00	.33	.00	.33	-
W_MANGO_03_04	1,209	.70	.46	1	.70	.64	.48	.00	.33	.00	.33	-

^a Excluded W_BANADS_01A_01.

Item score ID	N	Mean	SD	Max possible score	p+	Polyserial $(N = 1,067)$	Pearson correlation $(N = 1,067)$	% omit	% not reached	% system error	% not respond	Flag
W_MANGO_03_05	1,209	.56	.50	1	.56	.48	.37	.08	.33	.00	.41	-
W_MANGO_03_06	1,207	1.38	.93	3	.46	.70	.67	.00	.49	.00	.49	-
W_MANGO_04_I	1,113	4.30	2.26	10	.43	.89	.88	.36	.27	.00	.63	-
W_MANGO_04_III	1,113	3.79	1.98	10	.38	.88	.86	.36	.27	.00	.63	-
Mean	-	1.36	.84	2.93	.54	.65	.56	.06	.84	.00	.90	-
SD	-	1.41	.65	3.54	.13	.15	.18	.13	1.17	.00	1.14	-
Min	-	.34	.46	1.00	.34	.39	.31	.00	.00	.00	.00	-
Max	-	4.30	2.26	10.00	.70	.89	.88	.36	3.96	.00	3.96	-

Note. See Table 11 for definition of flags.

Differential Item Functioning (DIF)

Test fairness requires that all test items be fair to all students. DIF analysis is designed to identify items that may have biases against certain groups of students. That is, if students having the same ability but from different demographic groups perform differently on an item, then this item shows DIF. A DIF item may indicate that it measures some construct different from what it is intended to measure. For an item deemed to have DIF, further review by content experts is needed, and depending on the outcome of the review, the item may be kept as it is, revised, or discarded. In this study, the Mantel-Haenszel procedure (Dorans & Holland, 1993; Holland & Thayer, 1988; Zwick, Donoghue, & Grima, 1993) was used to detect DIF. ETS DIF procedures (Dorans & Holland, 1993) result in classification of items into three DIF categories: A, B, and C. Category A items contain negligible DIF, Category B items exhibit slight or moderate DIF, and Category C items have moderate to large values of DIF. In practice, only Category C items are considered to have substantial DIF and are designated for further review and/or revision.

The DIF analyses were conducted in the following demographic group pairs:

- 1. gender (male vs. female),
- 2. race/ethnicity (White vs. Black; White vs. combination of Native American, Asian/Pacific Islander, and Hispanic), and
- 3. low SES students (no vs. yes).

The reason for combining Native American, Asian/Pacific Islander, and Hispanic is that these ethnic groups had sample sizes too small to conduct DIF analyses separately. Table 16 lists the Category C DIF items, and the tables in Appendix B show the DIF category for every item. Only one item in each of PAA 1 and PAA 2 has Category C DIF. Note that the Black and race/ethnicity combination had small sample sizes, fewer than 200. Therefore, their DIF results should be interpreted with caution.

Table 16

Category C Differential Item Functioning (DIF) Items

Item score ID	C DIF description
W_SERVLEARN16	Favor female over male
W_BANADS_01C	Favor White over Black

Statistics for Subscores and Total Scores

In this section we present the summary statistics (sample size, mean and standard deviation), reliabilities (standardized Cronbach alpha¹), and correlations of subscores and total raw scores, and explore the relationships between lead-in tasks (i.e., Tasks 1 to 3) and essays.

Subscores and Total Scores

Tables 17 to 20 show the statistics for the subscores and total raw scores of the four PAAs. These tests were relatively difficult as their mean total scores were 42% to 47% of the maximum possible scores. The subscores had 1 to 16 items (see Tables 2 to 5) and reliabilities ranging from .24 to .92. For each PAA, the subscore computed from the essay had the highest reliability. Note that each essay subscore contained two scores measuring different aspects of the same essay. The intersubscore correlations were between .18 and .64. The correlations between subscores and total scores ranged from .43 to .93.

Table 21 shows that the correlations among the four PAA total scores were between .66 and .76. Table 21 also displays comparisons of the standardized alphas based on item scores and task scores. The alphas based on item scores ranged from .79 to .86, and the alphas based on task scores (commonly known as testlet reliability) were close to those based on item scores with differences of between .01 and .06, which indicates that testlet effects at the task level were minor for these four PAAs. For comparison purposes, the alphas based on item and task raw scores for the four PAAs are shown in Appendix C.

Table 17
Service Learning (PAA 1): Test Subscore and Total Score Summary and Correlations

Saama	M	Maan	SD	Standardized		Pearson correlation		
Score	N	Mean	alpha ^a	S1	S2	S 3	S4	
S1	1,137	2.02	1.72	.62	-	-	-	-
S2	1,186	5.63	3.19	.74	.58	-	-	-
S3	1,191	3.40	1.91		.40	.55	-	-
S4	1,115	13.00	6.38	.91	.42	.57	.64	-
Total	1,057	24.51	11.03	.85	.64	.81	.77	.92

Note. PAA = periodic accountability assessment, S1 = subscore for give feedback,

S2 = subscore for compare, S3 = subscore for short evaluation, S4 = subscore for essay.

^a Reliability was not calculated for a subscore with one item.

Table 18

Invasive Plant Species (PAA 2): Test Subscore and Total Score Summary and Correlations

Saora	Score N	Mean	SD	Standardized	Pearson correlation						
30016		Mean	SD	alpha ^a	S 1	S2	S3	S4	S5		
S 1	1,212	2.42	1.41	-	-	-	-	-	-		
S2	1,012	7.20	1.85	.41	.36	-	-	-	-		
S 3	1,200	8.97	4.22	.84	.52	.50	-	-	-		
S4	1,207	2.95	2.75	-	.45	.39	.55	-	-		
S5	1,102	11.81	7.89	.86	.37	.35	.49	.42	-		
Total	912	33.87	14.17	.86	.59	.59	.80	.68	.87		

Note. PAA = periodic accountability assessment, S1 = subscore for guiding questions, S2 = subscore for evaluate sources, S3 = subscore for organize information, S4 = subscore for revision, S5 = subscore for write pamphlet,

Table 19
Ban Ads (PAA 3): Test Subscore and Total Score Summary and Correlations

Caama	N	Mean	SD	Standardized		P	earson c	orrelation	on	
Score	Score IV	Mean	SD	alpha ^a	S 1	S2	S 3	S4	S5	S6
S1	1,159	2.54	1.00	.24						
S2	1,124	1.29	1.13	.68	.30					
S 3	1,158	7.56	2.07	.66	.25	.40				
S4	1,157	2.84	1.41	.35	.18	.34	.26			
S5	1,155	1.93	2.09		.27	.56	.38	.34		
S6	1,056	11.84	6.49	.92	.30	.59	.44	.34	.60	
Total	1,025	28.08	10.93	.79	.43	.72	.62	.50	.76	.93

Note. PAA = periodic accountability assessment, S1 = subscore for summary feedback, S2 = subscore for CR summary, S3 = subscore for claims, S4 = subscore for evidence, S5 = subscore for critique, S6 = subscore for essay.

^a Reliability was not calculated for a subscore with one item.

^a Reliability was not calculated for a subscore with one item.

Table 20

Mango Street (PAA 4): Test Subscore and Total Score Summary and Correlations

Caara	N	Mean	SD	Standardized	Pearson correlation					
Score	alpha ^a	S1	S2	S3	S4					
S1	1,165	2.71	1.51	.64						
S2	1,211	3.63	1.79		.48					
S 3	1,207	4.57	2.06	.66	.60	.53				
S4	1,113	8.09	4.01	.89	.54	.61	.60			
Total	1,067	19.20	7.89	.85	.74	.77	.81	.91		

Note. PAA = periodic accountability assessment, S1 = subscore for support interpretation,

S2 = subscore for interpretive discussion, S3 = subscore for choose interpretation,

S4 = subscore for essay.

Table 21

Total Score Summary and Correlations

T-4-1	Standardi	zed alpha	Pearson correlation (N)					
Total raw score	Task	Item	PAA 1	PAA 2	PAA 3			
Service Learning (PAA 1)	.82	.85						
Invasive Plant Species (PAA 2)	.80	.86	.66 (271)					
Ban Ads (PAA 3)	.81	.79	.75 (375)	.66 (200)				
Mango Street (PAA 4)	.84	.85	.71 (246)	.76 (326)	.74 (286)			

Note. PAA = periodic accountability assessment.

Table 22 shows the correlations of the four PAAs with some Grade 7 state tests by state on English language arts (ELA), math, reading, and writing. The numbers of available state tests on ELA, math, reading, and writing were 8, 10, 6, and 4. (Please note the limited sample sizes used in calculating these correlations: Most correlations were based on sample sizes smaller than 100.) The mean correlations between the four PAAs and the state tests were between .46 and .66, which provided some supportive evidence for the validity of CBAL Writing tests. The mean correlations with the state ELA and reading tests were slightly higher than those with the math state tests; however, the mean correlations with the state writing tests appeared to be slightly lower than those with the state math tests, which indicated some differences between the CBAL writing tests and the state writing tests. One such difference is that each CBAL writing test

^a Reliability was not calculated for a subscore with one item.

included three lead-in tasks to measure reading abilities related to essay writing. A second difference is that each CBAL Writing test includes extensive source materials that students must read in preparation for writing their culminating essay. The high reading demand made by CBAL writing tests is evident in the pattern of correlations shown in Table 22.

Lead-In Tasks and Essay

The lead-in tasks measure reading and/or critical thinking ability, and the essays directly evaluate writing ability. It is interesting to explore the relationships between the lead-in tasks and the essays. Figures 1 to 4 show the scatter plots of the subscores in the lead-in tasks versus the essay scores (Task 4 scores) with the LOWESS (locally weighted scatter plot smoothing; Cook & Weisberg, 1999, pp. 42–45) regression lines with a smoothing parameter of 0.6 for the four PAAs, respectively. The LOWESS regression is a locally empirical regression method that does not assume a parametric form. One can see that for each PAA essay score the increase was monotonic with each lead-in subscore, although the increase might not be strictly linear.

The influence of test form on the relationships among the lead-in tasks and the essays was examined. Because each form has a different topic and tests a rather different type of critical thinking skill, it is reasonable to assume that the lead-in tasks are more strongly associated with the final essay in each form than across forms. On the other hand, the lead-in tasks often involve much simpler skills, reflecting a general level of development of reading and/or critical thinking ability, while the essays show common variance due to general verbal fluency and document construction skills. Therefore, it is also possible that the associations among the lead-in tasks across test forms and among the essays across test forms are stronger than those between the lead-in tasks and the essay within test forms. Table 23 shows the means and standard deviations of lead-in scores (sums of the first three task scores) and essay scores, and their correlations across the four PAAs. The comparison of the correlations among lead-in and essay raw scores across four PAAs did not reveal a systemic pattern: The relationships depended on the specific PAAs. See Table 24 for the comparison results separated by each PAA and section.

Table 22

Correlations of the Four Writing Periodic Accountability Assessments (PAAs) With State Tests

State/school	CD AT DAA		Pearson cor	relation (N)	
State/school	CBAL PAA	ELA	Math	Reading	Writing
Alabama	Service Learning	.80 (29)	.52 (29)	.74 (29)	
(School A) ^a	Invasive Plant Species	.54 (29)	.40 (29)	.58 (29)	
	Ban Ads	.68 (28)	.59 (28)	.61 (28)	
	Mango Street	.68 (33)	.52 (33)	.65 (33)	
Alabama	Service Learning	.36 (39)	.55 (39)	.43 (39)	
(School B) ^a	Invasive Plant Species	.70 (18)	.66 (18)	.62 (18)	
	Ban Ads	.36 (15)	.28 (15)	.32 (15)	
	Mango Street	.39 (21)	.18 (21)	.27 (21)	
Arkansas	Service Learning	.60 (145)	.58 (145)		
	Invasive Plant Species	.56 (117)	.59 (117)		
	Ban Ads	.48 (123)	.53 (123)		
	Mango Street	.62 (109)	.60 (109)		
Arizona	Service Learning	.66 (36)	.54 (152)	.61 (171)	.57 (206)
	Invasive Plant Species	.76 (33)	.55 (113)	.69 (123)	.52 (156)
	Ban Ads	.56 (14)	.66 (117)	.71 (153)	.58 (166)
	Mango Street	.68 (34)	.59 (129)	.67 (137)	.58 (170)
California	Service Learning	.52 (31)	.30 (31)	.49 (31)	.25 (31)
	Invasive Plant Species	.75 (19)	.34 (19)	.68 (19)	.67 (19)
	Ban Ads	.55 (30)	.56 (30)	.46 (30)	.25 (30)
	Mango Street	.68 (28)	.12 (28)	.64 (28)	.45 (28)
Florida	Service Learning		.67 (21)	.68 (21)	
	Invasive Plant Species		.86 (14)	.89 (14)	
	Ban Ads		.76 (18)	.76 (18)	
	Mango Street		.78 (25)	.75 (25)	
Georgia	Service Learning	.60 (42)	.60 (42)	.65 (16)	
	Invasive Plant Species	.48 (65)	.51 (65)	.45 (41)	
	Ban Ads	.58 (39)	.43 (39)	.70 (13)	
	Mango Street	.57 (70)	.53 (70)	.66 (47)	
Kentucky	Service Learning	.70 (19)	.57 (19)		
	Invasive Plant Species	.80 (18)	.67 (18)		
	Ban Ads	.66 (38)	.64 (38)		
	Mango Street	.60 (31)	.52 (31)		
Mississippi	Service Learning	.39 (23)	.35 (23)		
	Invasive Plant Species	.77 (15)	.55 (15)		
	Ban Ads	.57 (42)	.47 (42)		
	Mango Street	.41 (28)	.42 (28)		

State/school	CBAL PAA		Pearson con	rrelation (N)	
State/school	CBALPAA	ELA	Math	Reading	Writing
Ohio	Service Learning	.45 (58)	.42 (58)		.57 (58)
	Invasive Plant Species	.55 (85)	.54 (85)		.43 (85)
	Ban Ads	.59 (88)	.55 (88)		.55 (88)
	Mango Street	.52 (65)	.27 (65)		.55 (65)
Texas	Service Learning		.56 (75)	.47 (73)	.54 (74)
	Invasive Plant Species		.57 (68)	.44 (66)	.52 (67)
	Ban Ads		.54 (81)	.56 (81)	.47 (82)
	Mango Street		.55 (69)	.42 (68)	.46 (69)
Mean ^b	Service Learning	.56	.51	.58	.49
	Invasive Plant Species	.66	.57	.62	.54
	Ban Ads	.56	.55	.59	.46
	Mango Street	.57	.46	.58	.51

Note. ELA = English language arts, PPA = periodic accountability assessment.

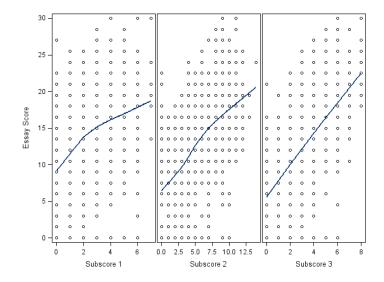


Figure 1. Service Learning (PAA 1): scatter plots of lead-in subscores versus essay scores with LOWESS regression lines.

^a Schools A and B reported test scores at different scales. Therefore, their correlations were calculated separately. ^b The simple average of correlations.

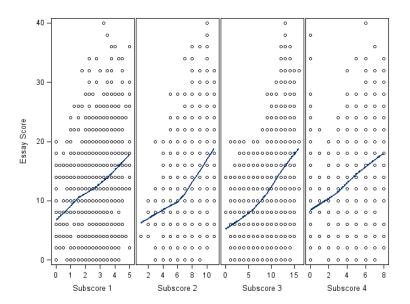


Figure 2. Invasive Plant Species (PAA 2): scatter plots of lead-in subscores versus essay scores with LOWESS regression lines.

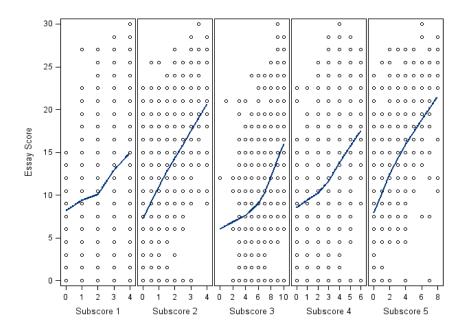


Figure 3. Ban Ads (PAA 3): scatter plots of lead-in subscores versus essay scores with LOWESS regression lines.

Figure 4. Mango Street (PAA 4): scatter plots of lead-in subscores versus essay scores with LOWESS regression lines.

Table 23

Correlations Among Lead-In and Essay Raw Scores Across Four Periodic Accountability Assessments (PAAs)

PAA	Section	Maan	SD	Service Le	arning (N)	Invasive Plan	nt Species (N)	Ban Ac	ls (N)	Mango Street (N)
PAA	Section	Mean	SD	Lead-in	Essay	Lead-in	Essay	Lead-in	Essay	Lead-in
Service	Lead-in	11.34	5.71	-	-	-	-	-	-	-
Learning	Essay	13.17	6.39	.66(1,057)	-	-	-	-	-	
Invasive Plant	Lead-in	21.78	8.19	.64(271)	.60(271)	-	-	-	-	-
Species	Essay	12.09	7.98	.40(271)	.44(271)	.53(912)	-	-	-	
	Lead-in	16.22	5.38	.65(375)	.59(375)	.57(200)	.54(200)	-	-	-
Ban Ads	Essay	11.86	6.54	.63(375)	.65(375)	.49(200)	.55(200)	.68(1,025)	-	
	Lead-in	11.03	4.50	.64(246)	.61(246)	.74(326)	.57(326)	.63(286)	.63(286)	-
Mango Street	Essay	8.17	4.05	.55(246)	.58(246)	.62(326)	.56(326)	.58(286)	.67(286)	.70(1,067)

Table 24

Correlation Comparison Results Among Lead-In and Essay Across Four Periodic

Accountability Assessments (PAAs)

PAA	Section	Comparison
Service Learning	Lead-in	The correlation with the within PAA essay was similar to those with lead-ins, and correlations with lead-ins were higher than with essays.
	Essay	The correlation with the within PAA lead-in was the highest, and correlations with lead-ins were higher than with essays except for Ban Ads where the order was the reverse.
Invasive Plant Species	Lead-in	The correlations with lead-ins were higher than with essays, and all correlations were higher than the correlation with the within essay except for with the Ban Ads essay.
	Essay	All correlations were close, except for low correlations with the Service Learning lead-in and essay.
Ban Ads	Lead-in	The correlation with the within PAA essay was the highest, and correlations with leading were higher than with essays.
	Essay	The correlation with the within PAA lead-in was the highest, and correlations with essays were higher than with lead-ins.
Mango Street	Lead-in	The correlations with lead-ins were higher than with essays except for Ban Ads, where they were equal; the correlation with the Invasive lead-in was higher than with the within PAA essay.
	Essay	The correlation with the within PAA essay was the highest, and correlations with essays were higher than with lead-ins except for Invasive where the order was reverse.

Item Response Theory (IRT) Item Calibration and Scaling

The four PAAs were calibrated using the unidimensional generalized partial credit model (GPCM; Muraki, 1992). Two calibration approaches, concurrent calibration and separate calibration, were carried out, and the item parameter estimates and ability (theta) estimates were compared. In this study, the GPCM was formulated as the following:

$$P_{ijs_{im}} = P(x_{ij} = s_{im} \mid \theta_j, a_i, b_i, \mathbf{d}_i) = \frac{\exp(a_i \theta_j s_{im} - b_i s_{im} + \sum_{h=0}^{m} d_{ih})}{\sum_{v=0}^{M_i - 1} \exp(a_i \theta_j s_{iv} - b_i s_{iv} + \sum_{h=0}^{v} d_{ih})}$$

where

$$a_i \theta_j s_{i0} - b_i s_{i0} + d_{i0} \equiv 0$$
;

 x_{ij} is examinee j's score on item i;

 s_{im} is the score of item i's score category m (m = 0 to $M_i - 1$);

 b_i is the location parameter (or difficulty parameter for dichotomous items) for item i;

 d_{ih} is the step parameter for score category h (h = 0 to $M_i - 1$), and $\sum_{h=1}^{M_i - 1} d_{ih}$ is constrained to 0 for model identification purpose;

 \mathbf{d}_i is the vector with elements d_{ih} ;

 a_i is the discrimination (slope) parameter for item i;

 θ_i is examinee j's latent (theta) score; and

 $P_{ijs_{im}}$ is the probability of getting score s_{im} on item i conditioned on examinee j's theta and item i's parameters.

In the four PAAs, dichotomous items had scores 0 or 1. And the polytomous items had up to 11 score categories, and the scores assigned to each category are shown in Table 25. For example, W_SERVLEARN17_I had 11 score categories ranging from 0 to 15 with the interval of 1.5.

Concurrent Versus Separate Calibrations

Recall that in the current test design each student took two Writing PAAs out of the four PAAs within a short period, and there was no common item between PAAs. In the concurrent calibration, all the items were calibrated together, and for the test forms that a student did not take, their item responses were treated as missing in estimating item parameters. Examinees were assumed to be from a common population, and PAAs were linked together by the common PAAs that examinees took. Then, the item parameter estimates from the concurrent calibration were used to estimate thetas for each examinee on each PAA. In the separate calibration, each PAA was calibrated separately, and the item parameter and theta estimates of the four PAAs from the separate calibrations were assumed to be on the same scale by the assumption of equivalent examinee groups. The expected a posterior (EAP) method was used to estimate theta.

Table 26 shows the sample sizes used in the item calibration and EAP theta estimation for each calibration. Note that a student with any missing value in a PAA was excluded from the theta estimation in the PAA.

Table 25
Score Categories (SC) for Polytomous Items

Item	SC1	SC2	SC3	SC4	SC5	SC6	SC7	SC8	SC9	SC10	SC11
W_BANADS_01B	0	.5	1	1.5	2	-	-	-	-	-	-
W_BANADS_01C	0	.5	1	1.5	2	-	-	-	-	-	-
W_BANADS_03	0	1	2	3	4	5	6	7	8	-	-
W_BANADS_04_I	0	1.5	3	4.5	6	7.5	9	10.5	12	13.5	15
W_BANADS_04_III	0	1.5	3	4.5	6	7.5	9	10.5	12	13.5	15
W_INVASIVE_01_01 ^a	0	.5	1	1.5	2	2.5	3	3.5	4	4.5	5
W_INVASIVE_03_01	0	1	2	3	4	5	6	7	8		-
W_INVASIVE_04_02_I b	0	2	4	6	8	10	12	14	16	18	-
W_INVASIVE_04_02_III b	0	2	4	6	8	10	12	14	16	18	-
W_MANGO_01_01	0	.5	1	-	-	-	-	-	-	-	-
W_MANGO_01_02	0	.5	1	-	-	-	-	-	-	-	-
W_MANGO_01_03	0	.5	1	-	-	-	-	-	-	-	-
W_MANGO_01_04	0	.5	1	-	-	-	-	-	-	-	-
W_MANGO_01_05	0	.5	1	-	-	-	-	-	-	-	-
W_MANGO_02_01	0	1	2	3	4	5	6	7	8	-	-
W_MANGO_03_06	0	.5	1	1.5	2	2.5	3	-	-	-	-
W_MANGO_04_I	0	1	2	3	4	5	6	7	8	9	10
W_MANGO_04_III	0	1	2	3	4	5	6	7	8	9	10
W_SERVLEARN16	0	1	2	3	4	5	6	7	8		
W_SERVLEARN17_I	0	1.5	3	4.5	6	7.5	9	10.5	12	13.5	15
W_SERVLEARN17_III	0	1.5	3	4.5	6	7.5	9	10.5	12	13.5	15

^a Decimal scores .25 and .75 were rounded to .50 and 1, respectively. ^b Score 20 was combined with Score 18 in order for smooth calibration.

Table 26
Sample Sizes Used in Item Response Theory (IRT) Calibrations

		Separate ca	alibration		Concurrent
Estimation	Service Learning	Invasive Plant Species	Ban Ads	Mango Street	calibration
Item parameter	1,195	1,219	1,161	1,213	2,580
EAP theta	1,057	912	1,025	1,067	NA

Note. EAP = expected a posterior.

In Figure 5 we compare estimates of item discrimination parameters (a_i) , item location parameters (b_i) , and item step parameters (d_{ih}) between the concurrent and separate calibrations for the four PAAs. The item parameter estimates from both calibrations were highly correlated (≥ 0.96) except for the slope parameters in Ban Ads and Mango Street, and the location parameters in Service Learning. The low correlation for the location parameters in Service Learning was caused by the large differences, relative to other items, in the location parameter estimates of the two items, W_SERVLEARN09H and W_SERVLEARN10H, between the two calibrations.

Figure 6 shows the comparisons of EAP theta estimates between the two calibration approaches for the four PAAs. The EAP theta estimates from the separate calibrations were transformed to have the same mean and standard deviation of the combined four PAAs as the ones from the concurrent calibration so that they were in the same metric. EAP theta estimates were almost perfectly correlated for all PAAs (≥ 0.99), and the root mean squared differences (RMSDs) for Service Learning and Invasive Plant Species were quite small. It appears that the two items having large differences in location parameter estimates did not have much influence on EAP theta estimates. However, the RMSDs for Ban Ads and Mango Street were much higher, at .17 and .13, respectively. From the plots, one can see that some points deviated considerably from the diagonal line.

In conclusion, there were some differences in item parameter estimates from the separate and concurrent calibrations, especially for Ban Ads, Mango Street, and Service Learning. The calibrations produced very similar EAP theta estimates for Service Learning and Invasive Plant Species, and highly correlated but somewhat different EAP theta estimates for Ban Ads and Mango Street. Because in practice theta estimates are often of ultimate concern, we give greatest weight to those estimates when evaluating results from the different calibrations. In the current

study, there were anchor tests in the concurrent calibration, while the separate calibrations were based on the assumption of equivalent groups, which might not be true. Therefore, in the remainder of this report the results from the concurrent calibration are reported and used.

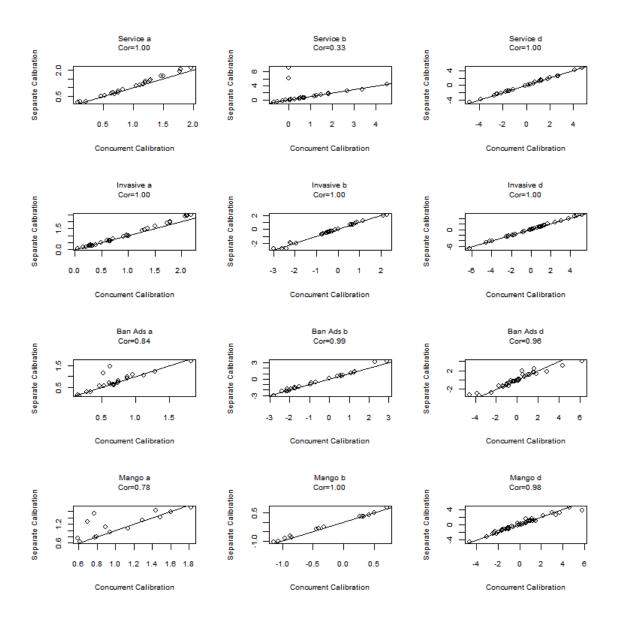


Figure 5. Comparison of item parameters between concurrent calibrations and separate calibrations; the lines in the plots are diagonal lines.

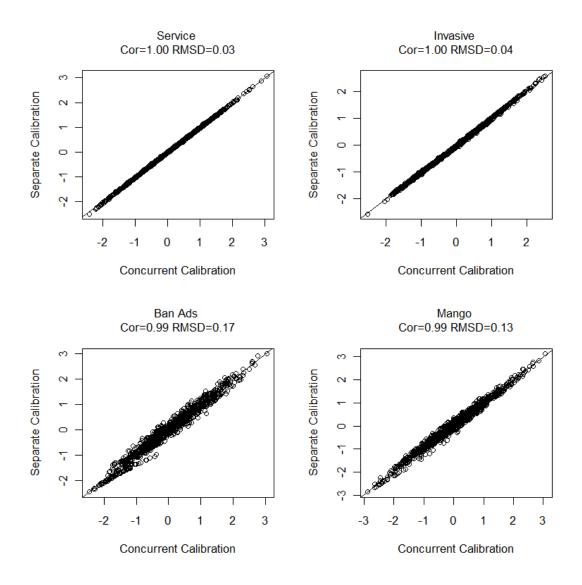


Figure 6. Comparison of EAP thetas between concurrent calibrations and separate calibrations; the lines in the plots are diagonal lines.

Item Parameter and Theta Estimates

Tables 27 to 30 list the item parameter estimates, standard errors, and significance levels of item chi-square fit statistics for the four PAAs. Across the four PAAs, the item discrimination parameter estimates (a_i) were between .06 and 2.18, the item location parameter estimates (b_i) were between -2.99 and 4.51, and the item step parameter estimates (d_{ih}) were in the range from-6.28 to 6.25.

Table 27
Service Learning (PAA 1): Item Parameter Estimates and Standard Errors

Itam	Slo	pe	Loca	ation	Ste	p 1	Step	2	Ste	р3	Ste	p 4	Step	5	Ste	p 6	Step	o 7	Step	8 0	Step	9	Step	10	Sig
Item	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	ng.
W_SERVLEARN01	1.20	.09	.71	.07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_SERVLEARN02	.64	.08	2.69	.33	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_SERVLEARN03	.46	.08	3.40	.57	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_SERVLEARN04	.74	.07	.53	.09	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_SERVLEARN05	1.20	.10	1.28	.09	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_SERVLEARN06	.82	.09	1.85	.17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_SERVLEARN07	1.28	.09	.30	.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_SERVLEARN08H	.66	.07	1.50	.17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_SERVLEARN08G	1.96	.11	.04	.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_SERVLEARN09H	.08	.06	.00	.74	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	**
W_SERVLEARN09G	1.11	.08	.11	.06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_SERVLEARN10H	.11	.06	.00	.54	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- :	**
W_SERVLEARN10G	.69	.08	1.85	.20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_SERVLEARN11H	.21	.07	4.51	1.41	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_SERVLEARN11G	1.79	.11	13	.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_SERVLEARN12H	1.05	.08	.72	.07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_SERVLEARN12G	1.28	.10	1.18	.08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_SERVLEARN13H	1.46	.09	27	.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	*
W_SERVLEARN13G	1.50	.10	53	.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_SERVLEARN14H	1.77	.11	.09	.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_SERVLEARN14G	1.16	.09	68	.07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_SERVLEARN16	.74	.03	.58	.03	1.25	.19	2.00	.18	1.09	.15	1.29	.13	-1.10	.14	09	.17	-2.72	.28	-1.73	.43	-	-	-	-	-
W_SERVLEARN17_I	.52	.02	.48	.03	.71	.40	4.13	.39	1.81	.28	2.67	.24	.58	.20	.36	.20	-1.46	.24	-1.49	.30	-2.46	.39	-4.85	.76	-
W_SERVLEARN17_III	.52	.02	.67	.03	1.28	.37	4.78	.34	1.28	.24	2.72	.22	.18	.19	08	.21	-1.62	.27	-2.51	.40	-3.88	.73	-2.16	.94	
W_INVASIVE_02_14	1.79	.11	71	.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_INVASIVE_02_15	1.79	.11	26	.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

7

T4		pe		ation	Ste	p 1	Ste	p 2	Ste	р 3	Ste	p 4	Step	5	Ste	р 6	Step	7	Step	8 0	Step	9	Step	10	C: ~
Item	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	-51g.
W_INVASIVE_02_16	1.74	.11	67	.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	*
W_INVASIVE_03_01	.39	.01	.88	.04	6.28	.56	4.47	.62	1.42	.40	1.76	.35	.93	.31	03	.31	66	.35	-1.59	.44	-	-	-	-	-
W_INVASIVE_04_02_I	.20	.01	.83	.04	2.47	.58	3.11	.59	.85	.63	3.86	.61	.21	.57	.34	.61	-3.96	.79	-4.58	1.19	-2.29	1.52	-	-	-
W_INVASIVE_04_02_III	.32	.02	1.17	.04	5.27	.36	4.73	.29	.63	.29	.11	.38	64	.48	1.58	.64	-1.89	.83	-2.47	1.07	-4.16	1.54	-	-	-

Table 28

Invasive Plant Species (PAA 2): Item Parameter Estimates and Standard Errors

	Item	Slo	pe	Loca	tion	Step	1	Step	2	Step	p 3	Step	o 4	Ste	p 5	Ste	p 6	Ste	p 7	Ste	p 8	Stej	p 9	Ste	p 10	Ci a
38		Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Sig.
	W_INVASIVE_01_01	.66	.03	.56	.04	-1.73	.28	1.02	.35	1.33	.29	1.20	.23	.94	.18	.31	.17	.15	.16	09	.17	80	.20	2.3 3	.35	-
	W_INVASIVE_01_02	.91	.07	31	.07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	W_INVASIVE_01_03	.29	.06	.65	.24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	W_INVASIVE_01_04	1.01	.11	-1.96	.17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	W_INVASIVE_01_05	.15	.06	2.28	1.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	W_INVASIVE_01_06	.26	.06	-2.23	.60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	W_INVASIVE_01_07	.97	.11	-2.19	.21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	W_INVASIVE_01_08	.64	.09	-2.60	.34	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	W_INVASIVE_01_09	.61	.07	39	.11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	W_INVASIVE_01_10	.33	.07	-2.40	.52	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	W_INVASIVE_01_11	.49	.08	-2.99	.49	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	W_INVASIVE_01_13	.29	.06	13	.22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	W_INVASIVE_02_01	2.12	.12	54	.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

^{*} *p* < .05, ** *p* <.01.

Ĺ	ມ
ı.	

T 4	Slo	pe	Loca	tion	Step	1	Step	2	Step	3	Step	4	Ste	p 5	Step	96	Step	o 7	Ste	ep 8	Ste	p 9	Ste	p 10	a:
Item	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	-Sig
W_INVASIVE_02_02	.98	.08	42	.07	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_INVASIVE_02_03	.64	.07	.72	.12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_INVASIVE_02_04	.72	.07	44	.09	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_INVASIVE_02_05	.06	.06	.00	1.00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	**
W_INVASIVE_02_06	1.27	.09	46	.06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_INVASIVE_02_07	2.18	.13	49	.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	**
W_INVASIVE_02_08	2.10	.13	72	.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_INVASIVE_02_09	1.30	.09	28	.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_INVASIVE_02_10	1.51	.09	36	.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_INVASIVE_02_11	1.36	.09	76	.06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_INVASIVE_02_12	.27	.06	2.13	.52	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_INVASIVE_02_13	2.08	.12	41	.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_INVASIVE_02_14	1.79	.11	71	.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_INVASIVE_02_15	1.79	.11	26	.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_INVASIVE_02_16	1.74	.11	67	.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	*
W_INVASIVE_03_01	.39	.01	.88	.04	-6.28	.56	4.47	.62	1.42	.40	1.76	.35	.93	.31	03	.31	66	.35	-1.59	.44	-	-	-	-	-
W_INVASIVE_04_02_I	.20	.01	.83	.04	2.47	.58	3.11	.59	.85	.63	3.86	.61	.21	.57	.34	.61	-3.96	.79	-4.58	1.19	-2.29	1.52	-	-	-
W_INVASIVE_04_02_III	.32	.02	1.17	.04	5.27	.36	4.73	.29	.63	.29	.11	.38	64	.48	-1.58	.64	-1.89	.83	-2.47	1.07	-4.16	1.54	-	-	-

^{*} *p* < .05, ** *p* < .01.

40

Table 29
Ban Ads (PAA 3): Item Parameter Estimates and Standard Errors

Itam	Slo	pe	Location	Ste	p 1	Step	2	Ste	p 3	Step	4	Step	5	Ste	p 6	Step	7	Step	8	Step	9	Step	10	Cia
Item	Est.	SE	Est. SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Sig.
W_BANADS_01A_02	.67	.08	-2.03 .22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_BANADS_01A_03	.54	.07	70 .13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	**
W_BANADS_01A_04	.17	.06	2.29 .90	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_BANADS_01A_05	.66	.08	-2.17 .24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_BANADS_01B	1.82	.09	1.09 .04	.02	.05	.69	.06	31	.07	40	.09	-	-	-	-	-	-	-	-	-	-	-	-	-
W_BANADS_01C	1.29	.06	.57 .04	27	.08	1.07	.08	97	.09	.18	.11	-	-	-	-	-	-	-	-	-	-	-	-	-
W_BANADS_02AX_A	.75	.08	-1.72 .17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_BANADS_02AX_B	.68	.08	-2.15 .24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	**
W_BANADS_02AX_C	.28	.06	-1.93 .45	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_BANADS_02AX_D	.96	.09	-1.80 .15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_BANADS_02AX_E	.88	.09	-1.76 .15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_BANADS_02AX_F	.75	.09	-2.40 .25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_BANADS_02AX_G	.47	.07	-2.12 .32	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_BANADS_02AX_H	1.12	.11	-2.13 .17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_BANADS_02AX_I	.88	.08	-1.52 .13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_BANADS_02AX_J	.61	.07	90 .13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_BANADS_02BX_A	.15	.06	-2.80 1.15	š -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_BANADS_02BX_B	.28	.06	1.25 .35	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_BANADS_02BX_C	.68	.07	.42 .10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_BANADS_02BX_D	.64	.07	97 .13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_BANADS_02BX_E	.34	.07	2.90 .59	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_BANADS_02BX_F	.73	.07	.01 .09	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_BANADS_03	.63	.03	1.28 .04	13	.16	1.57	.19	.75	.20	1.17	.19	-1.06	.24	27	.32	-1.37	.43	66	.52	-	-	-	-	**
W_BANADS_04_I	.63	.03	.61 .02	1.63	.30	4.37	.28	1.65	.19	1.83	.18	.09	.18	.20	.20	94	.23	-1.35	.27	-3.86	.48	-3.62	.84	-
W_BANADS_04_III	.52	.02	.69 .03	.51	.42	6.25	.39	.53	.23	2.82	.22	58	.22	.09	.25	-1.76	.32	82	.38	-4.57	.67	-2.47	.96	

^{**} *p* < .01.

4

Table 30

Mango Street (PAA 4): Item Parameter Estimates and Standard Errors

T4	Slope	Locat	ion	Step	1	Step	2	Stej	3	Ste	p 4	Step	5	Step	6	Step	7	Step	8	Step	9	Step	10	C:-
Item	Est. SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Est.	SE	Sig.
W_MANGO_01_01	1.13 .05	.71	.07	-2.17	.14	2.17	.15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_MANGO_01_02	1.60 .07	40	.05	-1.02	.07	1.02	.07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_MANGO_01_03	.62 .03	-1.14	.12	-4.66	.31	4.66	.30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_MANGO_01_04	1.49 .08	84	.06	-3.01	.30	3.01	.30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_MANGO_01_05	1.82 .08	.27	.04	-1.03	.07	1.03	.08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_MANGO_02_01	.59 .02	.31	.04	.86	.32	3.69	.27	.65	.17	1.33	.15	-1.16	.16	-1.30	.22	-1.60	.29	-2.47	.41	-	-	-	-	*
W_MANGO_03_01	.79 .07	-1.07	.11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_MANGO_03_02	1.44 .10	87	.06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_MANGO_03_03	.94 .07	32	.07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_MANGO_03_04	1.29 .09	96	.07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_MANGO_03_05	.78 .07	44	.08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W_MANGO_03_06	.89 .05	.33	.04	.10	.12	.62	.13	.30	.12	.55	.11	99	.12	57	.16	-	-	-	-	-	-	-	-	*
W_MANGO_04_I	.70 .03	.42	.03	1.16	.29	3.37	.25	1.01	.16	1.19	.16	06	.16	.16	.17	-1.11	.19	-1.10	.24	-2.29	.34	-2.35	.51	-
W_MANGO_04_III	.77 .03	.51	.03	.61	.44	5.83	.38	20	.14	1.50	.14	74	.15	19	.17	-1.49	.22	-1.68	.32	-1.67	.41	-1.98	.51	-

^{*} *p* < .05.

The mean item location parameter estimates were .87, -.40, -.64, and -.25 for the four PAAs. Therefore, PAA 1 was more difficult than PAAs 2 to 4, which is consistent with the result from the p+ values. The item fit tests indicate that the model did not fit 11 items very well. Note that the two items, W_SERVLEARN09H and W_SERVLEARN10H, having large difference on the location parameters between the two calibrations, were poorly fitted items. Appendix D lists the item fit statistics for all items.

Figures 7 and 8 show the test information curves and test characteristic curves, respectively, for the four PAAs based on the EAP theta estimates and EAP true score estimates. For all PAAs the test information curves had the same shape; however, they had different modes and spreads.

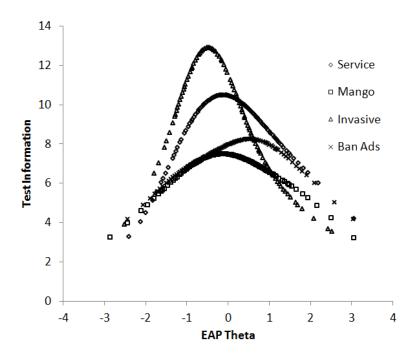


Figure 7. Test information curves based on EAP theta estimates.

Figure 9 includes the histograms of the distributions of the EAP theta estimates for the four PAAs. The four PAAs had theta means of .05, .01, -.03, and -.02, and standard deviations of .97, .97, .99, and 1.01, respectively. Figure 9 also shows that the theta reliability estimates for the four PAAs were between .87 and .89. The theta reliability for a test was estimated by the formula (Haberman & Sinharay, 2010):

$$\hat{R} = 1 - \frac{N^{-1} \sum_{j=1}^{N} \hat{Var}(\theta_{j})}{\hat{Var}(\theta)},$$

where $\hat{Var}(\theta_j)$ is the estimated posterior variance of examinee j's theta, $\hat{Var}(\theta)$ is the estimated posterior population variance of theta, and N is the total number of examinees.

Analyses of Factors Affecting Test Scores

The effects of PAA, test order, and demographic groups on test scores were evaluated using *t*-tests, one-way analysis of variance (ANOVA), multiple comparisons, and mixed models.

Subgroup Comparison

Table 31 provides *t*-test results as well as means and standard deviations of raw scores and theta estimates on each PAA for gender and (SES). Statistically significant differences were found for gender and SES groups across the four PAAs. The male and the economically disadvantage groups had significantly lower test scores than their respective comparison groups across the four PAAs.

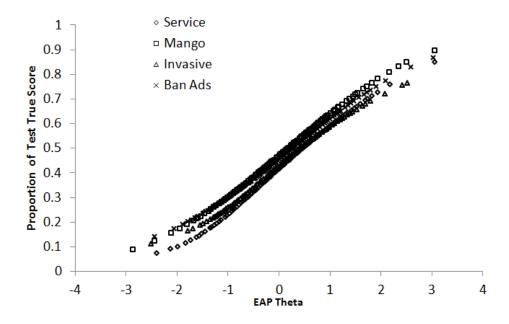


Figure 8. Test characteristic curves based on EAP theta and EAP true score estimates.

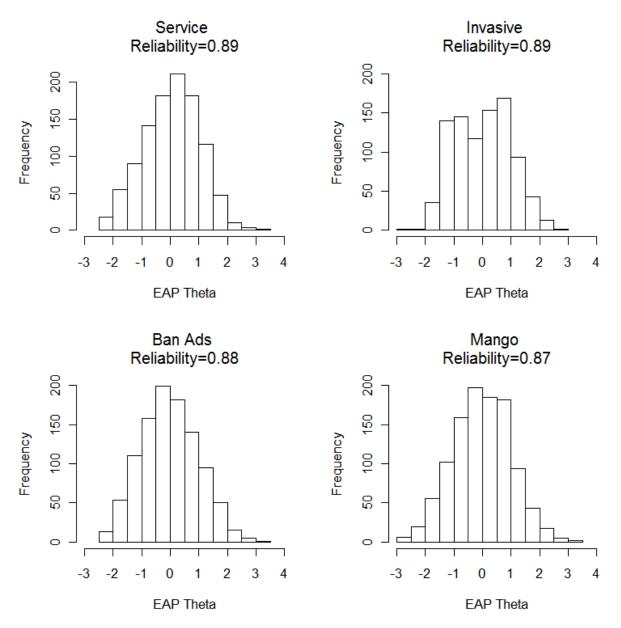


Figure 9. EAP theta estimate distributions.

Because the race subgroup had four subgroups, one-way ANOVAs on each PAA were first carried out on ethnic groups for theta estimates and raw scores. As shown in Table 32, all the one-way ANOVA tests were significant. Therefore, multiple comparisons (Tukey HSD test) were conducted on all pairs of racial/ethnic groups, and the group pairs having significant differences are shown in Table 32. Table 32 also provides the means and standard deviations of the theta estimates and raw scores for each racial/ethnic group in each PAA. One can see that, across the four PAAs, the order of the test scores of the four racial/ethnic groups from high to

low was Asian/Pacific Islander, White, Hispanic, and African American, and most of the score differences between racial/ethnic groups were statistically significant. In the following section, besides the demographics, the school, PAA, and test-order effects on test scores were examined.

Mixed Model

Mixed models were used to check the school, PAA, and test-order effects on test scores. The dependent variable was students' theta estimates on each PAA from the GPCM IRT calibrations.

Table 31
Subgroup Comparison on Each Periodic Accountability Assessment (PAA)

Cubanaun	Catagogg	λĭ		Ţ.	Гheta			Rav	v score	
Subgroup	Category	N	Mean	SD	t value	p value	Mean	SD	t value	p value
				Service	Learning					
Gender	M	441	16	.98	-5.98	.00**	21.95	11.14	-6.88	.00**
Gender	F	441	.23	.95	-3.70	.00	27.00	10.68	-0.00	.00
Low SES	N	338	.14	1.00	5.20	.00**	25.89	11.46	5.56	.00**
LOW SES	Y	271	26	.91	3.20	.00	20.91	10.36	5.50	.00**
			Inv	asive P	lant Speci	es				
Gender	M	380	14	.94	-5.06	.00**	31.45	13.61	-5.83	.00**
Gender	F	399	.20	.97	-3.00	.00	37.26	14.16	-3.63	.00
Low SES	N	273	.19	1.00	6.35	.00**	36.50	14.96	6.28	.00**
LOW SES	Y	266	32	.85	0.55	.00	29.10	12.28	0.26	.00
				Ban	Ads					
Gender	M	436	20	.92	-6.94	.00**	26.17	10.05	-7.05	.00**
Gender	F	435	.26	1.03	-0.74	.00	31.32	11.47	-7.03	.00
Low SES	N	271	.09	.99	4.88	.00**	29.41	10.97	4.90	.00**
LOW SES	Y	292	30	.92	4.00	.00	25.06	10.12	4.50	.00
				Mange	Street					
Gender	M	446	24	.97	-8.80	.00**	17.36	7.46	-9.50	.00**
Gender	F	412	.34	.98	-0.00	.00	22.25	7.60	-9.50	.00
Low SES	N	287	.25	1.05	6.11	.00**	21.41	8.17	6.19	.00**
LOW SES	Y	297	25	.90	0.11	.00 - "	17.51	7.00	0.19	.00. *

Note. SES = socioeconomic status.

^{**} *p* < .01.

Table 32

Race Subgroup Comparison on Each Periodic Accountability Assessment (PAA)

Race	N			Theta			ta: mul mparis			Raw	v score		m	w scor ultiple parise	e
		Mean	SD	F value	p value	1	2	3	Mean	SD	F value	p value	1	2	3
						Sei	vice L	earnir	ıg						
1	29	.67	1.08			-	-	-	32.26	11.98			-	-	-
2	141	51	.86	32.46	.00**	*	-	-	17.99	10.02	33.97	.00**	*	-	-
3	478	.27	.89	32.40	.00***	-	*	-	27.02	10.24	33.97	.00***	*	*	
4	88	11	.93			*	*	*	22.68	10.72			*	*	*
						Invasi	ive Pla	nt Spe	ecies						
1	23	1.11	.88			-	-	-	51.22	12.90			-	-	-
2	127	46	.80	22.60	.00**	*	-	-	26.54	11.51	26.12	.00**	*	-	-
3	399	.06	.97	22.60	.00***	*	*	-	35.02	14.16	20.12	.00***	*	*	-
4	75	18	.91			*	-	-	31.90	13.92			*	*	-
							Ban A	Ads							
1	28	1.26	.82			-	-	-	42.04	9.23			-	-	-
2	163	56	.88	44.66	.00**	*	-	-	22.43	9.73	41.78	.00**	*	-	-
3	406	.18	.94	44.00	.00***	*	*	-	30.35	10.47	41./6	.00***	*	*	-
4	78	13	.85			*	*	*	26.65	9.18			*	*	*
						N	Iango	Street							
1	26	.97	.90			-	-	-	26.98	7.45			-	-	-
2	166	49	.94	29.50	.00**	*	-	-	15.65	7.19	20.06	00**	*	-	-
3	422	.22	1.00	29.50	.00***	*	*	-	21.15	7.86	29.06	.00**	*	*	-
4	82	08	.95			*	*	-	-	-			*	*	

Note. 1 = Asian/Pacific Islander, 2 = African American, 3 = White, 4 = Hispanic.

In the full model, the random effects were school and student-within-school, and the fixed effects were PAA (A or B), test order (Test 1 or Test 2), and their interaction effect. Because the interaction was not significant (p = .70), it was dropped from the full model. The model comparisons show that school and student-within-school were significant random effects (both ps = .00). The final model estimates are shown in Table 33, which indicates that both PAA and test-order effects were significant. Table 34 shows that students performed better on the first PAA than the second PAA no matter which PAA they took first and that the theta means were different across the four PAAs. We also added the demographic variables to the final model to compare subgroup performance, and the results are shown in Table 35. The demographics

^a Tukey HSD test.

^{*} *p* < .05, ** *p* < .01.

(gender, SES, and race/ethnicity) had statistically significant effects on theta estimates, and test order was still significant; however, PAA was not statistically significant for this model once the demographic variables were taken into account. Note that gender, SES, and race/ethnicity were also significant in the above *t*-tests and one-way ANOVAs.

Table 33

Mixed Model for Periodic Accountability Assessment (PAA) and Test Order Effects

Fixed effect	Numerator df	Denominator df	F value	p value	Random effect	Variance
Order	3	1,435	113.98	.00	School	.26
PAA	1	1,435	4.73	.00	Student nested in school	.52
-	-	-	-	-	Residual	.25

Note. N = 3,394.

Table 34

Mean and Standard Deviation of Theta Estimates by Test Order and Periodic Accountability

Assessment (PAA)

Test order	Service	Learning		ve Plant cies	Ban	Ads	Mango	Street	To	otal
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
1	.21	.88	.06	.91	.09	.91	.05	1.06	.10	.95
2	13	1.03	09	1.06	14	1.05	11	.94	12	1.02
Total	.05	.97	.01	.97	03	.99	02	1.01	.00	.99

Table 35

Mixed Model With Subgroup Comparisons

Fixed effect	Numerator df	Denominator df	F value	p value	Random effect	Variance
Order	1	815	72.01	.00	School	.20
PAA	3	815	1.80	.15	Student nested in school	.41
Gender	1	815	53.67	.00	Residual	.21
SES	1	815	44.13	.00	-	-
Race	3	815	25.55	.00	-	-

Note. N = 1,963. PAA = periodic accountability assessment, SES = socioeconomic status.

Summary

The psychometric properties of the fall 2009 CBAL Writing PAAs were studied under both classical test theory and IRT models. Classical item statistics and IRT item parameter estimates were reported. The summary statistics and reliabilities of raw subscores and total scores, and IRT theta scores were presented. In addition, in the report we explored the effects of various factors (such as school, PAA, test order, task, item, student, and demographic characteristics) on item and test scores. The main findings are as follows:

- 1. The classical item statistics and IRT item parameter estimates using the GPCM show all items performed reasonably well except for the three items, W_SERVLEARN15, W_INVASIVE_01_12, and W_BANADS_01A_01, which had zero or negative correlations with the total test scores and were removed from the test analyses. For the human-scored items, the weighted kappa coefficients showed good to very good rater agreement. The missing response rates were smaller than 5%, except for most items in Task 1 in PAA 2 (Invasive Plant Species) and W_BANADS_01C. Only two items (W_SERVLEARN16, and W_BANADS_01C) had Category C DIF.
- 2. The total raw scores of the four PAAs had reliabilities (standardized Cronbach alpha) between .79 and .86, and they were close to the testlet reliabilities based on task scores, indicating that dependency among items within a task did not appear to have significant effects on the four PAAs. PAA 1 (Service Learning) was more difficult than PAAs 2 to 4, which had similar levels of difficulty. The correlations among the four PAAs were between .66 and .76. For all PAAs the inter-subscore correlations were between .18 and .64, and most were intermediate.
- 3. The total raw scores for all PAAs had intermediate correlations with some state tests on ELA, math, reading and writing, which provides some evidence to support the construct validity of the PAAs. The intermediate correlations with the state math tests may indicate the involvement of reading and writing skills in the math tests to some degree. The relatively low correlations with the state writing tests signify the difference between the CBAL writing tests and the state writing tests: In the authors' opinion, the state writing tests measured writing skills very narrowly, while the CBAL writing PAAs also measured reading skills in addition to writing skills (i.e., writing from reading).

- 4. Within each PAA, each lead-in subscore monotonically increased with essay score; however, the correlations among the total scores of the lead-in tasks and the essay scores within and across PAAs did not reveal a consistent relationship among the lead-in tasks and essays within and across PAAs.
- 5. Test order, school, student, gender, SES, and race/ethnicity had significant effects on test scores. Students performed better on the first test than the second test no matter which PAA they took. This test order effect may be due to test motivation: Because the tests had no stakes attached, students might not have been motivated to take these tests, especially the second one.
- 6. There were some differences in item parameter estimates between the separate and concurrent calibrations, especially for Ban Ads, Mango Street, and Service Learning. As for the EAP theta estimates, both calibrations produced very similar estimates for Service Learning and Invasive Plant Species, and highly correlated but somewhat different estimates for Ban Ads and Mango Street. Both calibrations involved assumptions: Separate calibration assumed equivalent groups taking the four PAAs, which might not be true; and concurrent calibration assumed no change on students' abilities across the two test occasions, which was not the case as the mixed models showed students performed better on the first test than the second test. Therefore, a more deliberate equating design is needed for the Writing PAAs.
- 7. The IRT results from the concurrent calibration were reported. Most items had reasonable parameter estimates; however, the IRT model did not fit 11 items well, and some item parameter estimates had extreme values. The reliabilities of the EAP theta estimates ranged from .87 to .89.

References

- Altman, D. G. (1991). *Practical statistics for medical research*. London, England: Chapman & Hall.
- Bennett, R. E. (2010). Cognitively based assessment of, for, and as learning: A preliminary theory of action for summative and formative assessment. *Measurement: Interdisciplinary Research and Perspectives*, 8, 70–91.
- Brennan, R. L. (2001). Generalizability theory. New York, NY: Springer-Verlag.
- Cook, R. D., & Weisberg, S. (1999). *Applied regression including computing and graphics*. New York, NY: Wiley.
- Crocker, L., & Algina, J. (1986). *Introduction to classical and modern test theory*. Orlando, FL: Harcourt Brace Jovanovich.
- Deane, P. (2011). *Writing assessment and cognition* (Research Report No. RR-11-14). Princeton, NJ: Educational Testing Service.
- Deane, P., Fowles, M., Baldwin, D., & Persky, H. (2011). *The CBAL summative writing assessment: A draft eight-grade design* (Research Memorandum No. RM-11-01). Princeton, NJ: Educational Testing Service.
- Deane, P., Fowles, M., Persky, H., Baldwin, D., Cooper, P., Ecker, M., et al. (2009). *Progress on designing the CBAL summative writing assessment: Design principles and results*.

 Unpublished manuscript. Princeton, NJ: Educational Testing Service.
- Dorans, N. J., & Holland, P.W. (1993). DIF detection and description: Mantel-Haenszel and standardization. In P. W. Holland & H. Wainer (Eds.), *Differential item functioning* (pp. 35–66). Hillsdale, NJ: Lawrence Erlbaum.
- Fleiss, J. L., & Cohen, J. (1973). The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. *Educational and Psychological Measurement*, *33*, 613–619.
- Fu, J., Wise, M. D., & Chung, S. (2011). *Dimensionality analysis of CBAL Writing tests*.

 Manuscript submitted for publication, Educational Testing Service, Princeton, NJ.
- Graf, E. A. (2009). Defining mathematics competency in the service of cognitively based assessment for grades 6 through 8 (Research Report No. RR-09-42). Princeton, NJ: Educational Testing Service.

- Haberman, S. J., & Sinharay, S. (2010). Reporting of subscores using multidimensional item response theory. *Psychometrika*, 75, 209–227.
- Holland, P. W., & Thayer, D. T. (1988). Differential item performance and the Mantel-Haenszel procedure. In H. Wainer & H. I. Braun (Eds.), *Test validity* (pp. 129–145). Hillsdale, NJ: Lawrence Erlbaum.
- Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. *Applied Psychological Measurement*, *16*, 159–176.
- O'Reilly, T., & Sheehan, K. M. (2009a). Cognitively based assessment of, for, and as learning:

 A framework for assessing reading competency (Research Report No. RR-09-26).

 Princeton, NJ: Educational Testing Service.
- O'Reilly, T., & Sheehan, K. M. (2009b). *Cognitively based assessment of, for, and as learning:*A 21st century approach for assessing reading competency (Research Memorandum No. RM-09-04). Princeton, NJ: Educational Testing Service.
- Shavelson, R. J., & Webb, N. M. (1991). *Generalizability theory: A primer*. Newbury Park, CA: Sage.
- Zwick, R., Donoghue, J. R., & Grima, A. (1993). Assessment of differential item functioning for performance tasks. *Journal of Educational Measurement*, *30*, 233–251

Notes

¹ The reason for using standardized alpha is to remove the impact of item variances. Note that in the four PAAs, item scores had various score ranges and thus their score variances varied considerably.

List of Appendices

	Р	age
A	Item Score Frequency Tables	. 54
В	Differential Item Functioning (DIF) Results	. 59
C	Cronbach's Alphas on Task and Item Raw Scores	. 63
D	Item Response Theory (IRT) Item Fit Statistics	. 64

Appendix A

Item Score Frequency Tables

Table A1
Service Learning: Item Score Frequency

	Tota	al																S	Scor	e													
Item score ID	100		0)	1		1.5		2		3		4	4.	.5	5	5	6	j	7	7	.5	8	9)	10.5	5 .	12	13.5	15	SE	OM	I NR
	N	%	N	%	N	%	N %	N	%	N	%	N	%	N	%	N	%	N	%	N %	N	%	N %	N	%	N	% N	′ %	N %	N %	N 9	6 N 9	6 N %
W_SERVLEARN01	1,193	100	787	66	406	34		-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-		-					
W_SERVLEARN02	1,193	100																															
W_SERVLEARN03	1,193	100																															
W_SERVLEARN04	1,193	100																															
W_SERVLEARN05	1,193	100	902	76	272	23		-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-		-					- 19 2
W_SERVLEARN06	1,193	100	913	3 77	243	20		-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-		-					- 37 3
W_SERVLEARN07	1,193	100	640	54	497	42		-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-		-					- 56 5
W_SERVLEARN08G	1,193	100	610	51	582	49		-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-		-					- 1 (
W_SERVLEARN08H	1,193	100	848	3 71	344	29		-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-		-					. 1 (
W_SERVLEARN09G	1,193	100	623	52	568	48		-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-		-					- 2 (
W_SERVLEARN09H	1,193	100	979	82	212	18		-	-	-	-	-	-	-	_	-	-	_	-		-	-		-	-	-		-					- 2 (
W_SERVLEARN10G	1,193	100	904	1 76	286	24		-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-		-					- 3 (
W_SERVLEARN10H	1,193	100	948	3 79	242	20		-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-		-					- 3 (
W_SERVLEARN11G	1,193	100	549	46	640	54		-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-		-					- 4 (
W_SERVLEARN11H	1,193	100	859	72	330	28		-	-	-	-	-	-	-	_	-	-	_	-		-	-		-	-	-		-					- 4 (
W_SERVLEARN12G	1,193	100	902	2 76	284	24		-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-		-			1	0	- 6 1
W_SERVLEARN12H	1,193	100	770	65	416	35		-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-		-			1	0	- 6 1
W_SERVLEARN13G	1,193	100	427	7 36	760	64		-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-		-					- 6 1
W_SERVLEARN13H	1,193	100	506	5 42	681	57		-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-		-					- 6 1
W_SERVLEARN14G	1,193	100	411	34	776	65		-	-	-	-	-	-	-	_	-	-	_	-		-	-		-	-	-		-					- 6 1
W_SERVLEARN14H	1,193	100	621	52	566	47		-	-	-	-	_	-	-	-	_	-	_	-		_	-		_	_	_		-					- 6 1
W_SERVLEARN15	1,193	100	1020	86	163	14		-	-	-	-	-	-	-	_	-	-	_	-		-	-		-	-	-		-					- 8 1
W_SERVLEARN16	1,193	100	117	7 10	93	8		162	2 14	186	5 16	324	1 27	-	-	126	11	137	11	28 2	2 -	-	16 1	l -	_	-		-				. 2	0 2 0
W_SERVLEARN17_I	1,117	100	75	5 7	-	-	33 3	3 -	-	93	3 8	3 -	-	98	9	-	-	205	18		186	5 17		195	17	103	9 70	6 (38 3	8	1	- 11	1 2 0
W_SERVLEARN17_III	1,117	100	76	5 7	-	-	41 4	1 -	-	152	2 14		-	117	10	-	-	248	22		184	16	<u> </u>	157	14	79	7 33	3	9]	. 8	1	- 11	1 2 0

Table A2

Invasive Plant Species: Item Score Frequency for Scores 0 to 4.75

	Total														Sco	re													
Item score ID	10111	0	.2	25	.5	.75	1		1.25	1.5	1	.75	2		2.25	2.5	5 2	2.75	3	3.25	5 3	3.5	3.7	5	4	4.25	5 4	1.5	4.75
	N %	N	% N	% <i>N</i>	V % I	N %	N	%	N %	N %	N	%	N	%	N %	N	% Λ	7 %	N %	N %	6 N	%	N	% <i>N</i>	%	N	6 Λ	<i>I</i> %	N %
W_INVASIVE_01_01	1,212 100	166	14 16	5 1 1	8 1 1	16 1	27	2	30 2	41 3	3 49	9 4	65	5	90 7	75	6 7	7 6	92	8 81 7	7 87	7 7	80	7 7	4 6	5 48	4 4	7 4	11 1
W_INVASIVE_01_02	1,212 100	501	41 -																										
W_INVASIVE_01_03	1,212 100		51 -																										
W_INVASIVE_01_04	1,212 100	174	14 -				, .																						
W_INVASIVE_01_05	1,212 100	649	54 -				470	39			-	-	-	-		-		-			-	-	-		-			-	
W_INVASIVE_01_06	1,212 100		33 -																										
W_INVASIVE_01_07	1,212 100	143	12 -				957	79			-	-	-	-		-		-			-	-	-		-			-	
W_INVASIVE_01_08	1,212 100	175	14 -				907	75			-	-	-	-		-		-			-	-	-		-			-	
W_INVASIVE_01_09	1,212 100	473	39 -				598	49			-	-	-	-		-		-			-	-	-		-			-	
W_INVASIVE_01_10	1,212 100	317	26 -				731	60			-	-	-	_		_		-				_	-		-			-	
W_INVASIVE_01_11	1,212 100	195	16 -				841	69			-	-	-	_		_		-			-	_	-		-			-	
W_INVASIVE_01_12	1,212 100	719	59 -				295	24			-	-	-	_		_		-			-	_	-		-			-	
W_INVASIVE_01_13	1,212 100	477	39 -				516	43			_	-	-	_		_		_				_	_		_			-	
W_INVASIVE_02_01	1,212 100	432	36 -				776	64			_	_	_	_		_		_				_	-		-			-	
W_INVASIVE_02_02	1,212 100	512	42 -				696	57			-	-	-	_		_		-			-	_	-		-			-	
W_INVASIVE_02_03	1,212 100	737	61 -				470	39			-	-	-	_		_		-			-	_	-		-			-	
W_INVASIVE_02_04	1,212 100	528	44 -				679	56			_	_	_	_		_		_				_	-		-			-	
W_INVASIVE_02_05	1,212 100	977	81 -				229	19			-	-	-	_		_		-			-	_	-		-			-	
W_INVASIVE_02_06	1,212 100	485	40 -				721	59			-	-	-	_		_		-			-	_	-		-			-	
W_INVASIVE_02_07	1,212 100	444	37 -				761	63			_	-	-	_		_		_				_	_		_			-	
W_INVASIVE_02_08	1,212 100	368	30 -				837	69			-	-	-	_		_		-			-	_	-		-			-	
W_INVASIVE_02_09	1,212 100	536	44 -				668	55			_	_	_	_		_		_				_	-		-			-	
W_INVASIVE_02_10	1,212 100	504	42 -				699	58			_	_	_	_		_		_				_	_		_			_	
W_INVASIVE_02_11	1,212 100	396	33 -				808	67			_	_	_	_		_		_				_	_		_			_	
W_INVASIVE_02_12	1,212 100	773	64 -				432	36			_	_	_	_		_		_				_	_		_			_	
W_INVASIVE_02_13	1,212 100	477	39 -				727	60			_	_	_	_		_		_				_	_		_			_	
W_INVASIVE_02_14	1,212 100	383	32 -				821	68			_	_	_	_		_		_				_	_		_			_	
W_INVASIVE_02_15	1,212 100	534	44 -				671	55			_	_	_	_		_		_				_	_		_			_	
W_INVASIVE_02_16	1,212 100	398	33 -				807	67			_	_	_	_		_		_				_	_		_			_	
W INVASIVE 03 01	1,212 100		38 -																										
W_INVASIVE_04_02_I	1,103 100		14 -																										
W_INVASIVE_04_02_III	1.103 100																												

55

56

Table A3

Invasive Plant Species: Item Score Frequency for Scores 5 to 20

													Sco	re												
Item score ID	5		6		7		8		10)	12	2	14		1	6	18	3	2	0	SI	3	ON	1	NF	₹
	N	%	N	%	N	%	N	%	N	%	N	%	N	%	N	%	N	%	N	%	N	%	N	%	N	%
W_INVASIVE_01_01	12	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10	1	-	-
W_INVASIVE_01_02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	20	2	39	3
W_INVASIVE_01_03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	11	1	65	5
W_INVASIVE_01_04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	0	76	6
W_INVASIVE_01_05	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	11	1	82	7
W_INVASIVE_01_06	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	4	0	96	8
W_INVASIVE_01_07	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	10	1	102	8
W_INVASIVE_01_08	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	18	1	112	9
W_INVASIVE_01_09	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	10	1	131	11
W_INVASIVE_01_10	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	19	2	145	12
W_INVASIVE_01_11	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	12	1	164	14
W_INVASIVE_01_12	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	19	2	178	15
W_INVASIVE_01_13	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	20	2	199	16
W_INVASIVE_02_01	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	3	0
W_INVASIVE_02_02	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	0	3	0
W_INVASIVE_02_03	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	5	0
W_INVASIVE_02_04	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	5	0
W_INVASIVE_02_05	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	0	5	0
W_INVASIVE_02_06	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6	1
W_INVASIVE_02_07	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	0	6	1
W_INVASIVE_02_08	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	1
W_INVASIVE_02_09	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	0	_	_	7	1
W_INVASIVE_02_10	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	0	_	_	7	1
W_INVASIVE_02_11	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	0	_	_	7	1
W_INVASIVE_02_12	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	1
W_INVASIVE_02_13	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	0	_	_	7	1
W_INVASIVE_02_14	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	0	_	_	7	1
W_INVASIVE_02_15	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	1
W_INVASIVE_02_16	_	_	_	_	-	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	-	_	_	7	1
W_INVASIVE_03_01	148	12	128	11	95	8	54	4	_	_	_	_	_	_	_	_	_	_	_	_	_	_	4	0	5	0
W_INVASIVE_04_02_I	_	_	112	10	_	_	172	16	141	13	132	12	58	5	25	2	13	1	6	1	_	_	_	_	1	0
W_INVASIVE_04_02_III	_	_	186	17	_	_	114	10	69	6	38	3	23	2		1	3	0	3	0	_	_	_	_	1	0

57

Table A4

Ban Ads: Item Score Frequency

	Total													Sc	ore													
Item score ID	10181		0	.5	1	1.5	2	2	3	4		4.5	5		6	7	7.5	5 8	3	9	10.5	12	13	5.5	15	SE	OM	NR
	N %	6 N	<i>I</i> %	N %	<i>N</i> %	N %	N	%	N %	N	%	N %	N %	N	%	<i>N</i> %	N	% <i>N</i>	%	<i>N</i> %	N %	N %	N	% 1	V %	<i>N</i> %	N %	N %
W_BANADS_01A_01	1,160 10	00 44	11 38		719 62		-	-		-	-			-	-		-		-				-					
W_BANADS_01A_02	1,160 10	00 26	66 23		893 77		-	-		-	-			-	-		-		-				-			1 0		
W_BANADS_01A_03	1,160 10	00 48	35 42		675 58		-	-		-	-			-	-		-		-				-					
W_BANADS_01A_04	1,160 10	00 69	91 60		469 40																							
W_BANADS_01A_05	1,160 10	00 24	19 21		91078		-	-		-	-			-	-		-		-				-					
W_BANADS_01B	1,160 10	00 57	70 49	164 14	259 22	105	9 57	7 5		-	-			-	-		-		-				-				4 (1 (
W_BANADS_01C	1,160 10	00 36	50 31	138 12	368 32	93	8 138	3 12		-	-			-	-		-		-				-				27 2	36
W_BANADS_02AX_A	1,160 10	00 28	35 25		873 75		-	-		-	-			-	-		-		-				-					2 (
W_BANADS_02AX_B	1,160 10	00 24	15 21		913 79		-	-		-	-			-	-		-		-				-					2 (
W_BANADS_02AX_C	1,160 10	00 43	30 37		728 63		-	-		-	-			-	-		-		-				-					2 (
W_BANADS_02AX_D	1,160 10	00 22	24 19		934 81		-	-		-	-			-	-		-		-				-					2 (
W_BANADS_02AX_E	1,160 10	00 24	16 21		912 79		-	-		-	-			-	-		-		-				-					2 (
W_BANADS_02AX_F	1,160 10	00 19	6 17		962 83		-	-		-	-			-	-		-		-				-					2 (
W_BANADS_02AX_G	1,160 10	00 33	30 28		828 71		-	-		-	-			-	-		-		-				-					2 (
W_BANADS_02AX_H	1,160 10	00 14	18 13	1	1,01087		-	-		-	-			-	-		-		-				-					2 (
W_BANADS_02AX_I	1,160 10	00 28	35 25		873 75		-	-		-	-			-	-		-		-				-					2 (
W_BANADS_02AX_J	1,160 10	00 44	12 38		716 62		-	-		-	-			-	-		-		-				-					2 (
W_BANADS_02BX_A	1,160 10	00 45	57 39		698 60		-	-		-	-			-	-		-		-				-				2 (3 (
W_BANADS_02BX_B	1,160 10	00 67	76 58		478 41		-	-		-	-			-	-		-		-				-				3 (3 (
W_BANADS_02BX_C	1,160 10	00 65	8 57		496 43		-	-		-	-			-	-		-		-				-				3 (3 (
W_BANADS_02BX_D	1,160 10	00 42	24 37		730 63		-	-		-	-			-	-		-		-				-				3 (3 (
W_BANADS_02BX_E	1,160 10	00 83	34 72		319 28		-	-		-	-			-	-		-		-				-				4 (3 (
W_BANADS_02BX_F	1,160 10	00 58	35 50		568 49		-	-		-	-			-	-		-		-				-				4 (3 (
W_BANADS_03	1,160 10	00 46	50 40		136 12		148	3 13	119 10	153	13		58	5 4	4 4	20 2	-	- 17	1				-					5 (
W_BANADS_04_I	1,059 10	00 8	87 8			43	4 -	-	157 15	5 -	-	142 13		19	9 19		130	12 -	-	127 12	286 8	64	6 14	1	5 0		2 (3 (
W_BANADS_04_III	1,059 10	00 9	90 9			28	3 -	-	216 20) -	-	111 10		24	6 23		123	12 -	-	115 11	54 5	54	5 10	1	7 1		2 (3 (

Table A5

Mango Street: Item Score Frequency

	Total	_														S	core														
Item score ID	Total		0		.5		1		1.	5	2		2.5	5	3		4		5		6		7	•	8		9		10	OM	NR
	N %		N	%	N	%	N	%	N	%	N	%	N	%	N	%	N	%	N	%	N	%	N	%	N	%	N 9	% Λ	<i>l</i> %	N %	N
W_MANGO_01_01	1,213 10	00	781	64	41	3	391	32	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-		-
W_MANGO_01_02	1,213 10	00 4	457	38	85	7	663	55	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-		8
W_MANGO_01_03	1,213 10	00 4	408	34	30	2	757	62	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-		18
W_MANGO_01_04	1,213 10	00 3	354	29	5	0	819	68	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-		35
W_MANGO_01_05	1,213 10	00 6	648	53	63	5	454	37	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-		48
W_MANGO_02_01	1,213 10	00	69	6	-	-	48	4	-	-	218	18	-	-	199	16	340	28	165	14	93	8	55	5	24	2			-		2
W_MANGO_03_01	1,213 10)0 4	401	33	-	-	809	67	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-		3
W_MANGO_03_02	1,213 10	00 3	367	30	-	-	842	69	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-		4
W_MANGO_03_03	1,213 10	00 5	543	45	-	-	666	55	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-		4
W_MANGO_03_04	1,213 10	00 3	357	29	-	-	852	70	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-		4
W_MANGO_03_05	1,213 10	00 5	525	43	-	-	683	56	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	1 () 4
W_MANGO_03_06	1,213 10	00 2	212	17	143	12	174	14	183	15	278	23	124	10	93	8	-	-	-	-	-	-	-	-	-	-			-		6
W_MANGO_04_I	1,116 10	00	56	5	-	-	41	4	-	-	161	14	-	-	152	14	206	18	148	13	157	14	88	8	63	6	25	2 1	2	1 4 (3
W_MANGO_04_III	1,116 10	00	27	2	-	-	12	1	_	-	348	31	-	-	132	12	255	23	118	11	112	10	51	5	26	2	17	2 1	1	1 4 (3

Appendix B

Differential Item Functioning (DIF) Results

Table B1
Service Learning: Item Differential Item Functioning (DIF) Categories

	Male	White	White	Low SES: no	
	(N = 441)	(N = 478)	(N = 478)	(N = 338)	Number of C
Item score ID	vs. female	vs. Black	vs. combination ^a	vs. yes	DIF (if not 0)
	(N = 441)	(N = 141)	(N = 120)	(N = 271)	
W_SERVLEARN01	A	A	A	A	-
W_SERVLEARN02	A	A	A	A	-
W_SERVLEARN03	A	A	A	A	-
W_SERVLEARN04	A	A	A	A	-
W_SERVLEARN05	A	A	A	A	-
W_SERVLEARN06	A	B-	A	A	-
W_SERVLEARN07	A	A	A	A	-
W_SERVLEARN08H	A	B+	A	A	-
W_SERVLEARN08G	A	A	A	A	-
W_SERVLEARN09H	A	A	A	A	-
W_SERVLEARN09G	A	A	A	A	-
W_SERVLEARN10H	A	A	A	A	-
W_SERVLEARN10G	A	A	A	A	-
W_SERVLEARN11H	A	A	A	A	-
W_SERVLEARN11G	A	B-	A	A	-
W_SERVLEARN12H	A	A	A	A	-
W_SERVLEARN12G	B-	A	A	A	-
W_SERVLEARN13H	A	A	A	A	-
W_SERVLEARN13G	A	A	A	A	-
W_SERVLEARN14H	A	B-	A	A	-
W_SERVLEARN14G	A	A	A	A	_
W_SERVLEARN16	C+	A	A	A	1
W_SERVLEARN17_I	A	A	A	A	-
W_SERVLEARN17_III	A	A	A	A	_

Note. The first group is the reference group, and the second group is the focus group. A positive sign favors the focus group, while a negative sign favors the reference group. DIF = differential item functioning, SES = socioeconomic status.

^a Combination of Native American, Asian/Pacific Islander, and Hispanic.

Table B2

Invasive Plant Species: Item Differential Item Functioning (DIF) Categories

Item score ID	Male (N = 380) vs. female (N = 399)	White (<i>N</i> = 399) vs. Black (<i>N</i> = 127)	White $(N = 399)$ vs. combination ^a $(N = 101)$	Low SES: no (N = 273) vs. yes (N = 266)	Number of C DIF (if not 0)
W_INVASIVE_01_01	A	A	A	A	-
W_INVASIVE_01_02	A	A	A	A	-
W_INVASIVE_01_03	A	A	A	A	-
W_INVASIVE_01_04	A	A	A	A	-
W_INVASIVE_01_05	A	A	A	A	-
W_INVASIVE_01_06	B-	A	A	A	-
W_INVASIVE_01_07	A	A	A	A	-
W_INVASIVE_01_08	B+	A	A	A	-
W_INVASIVE_01_09	B-	A	A	A	-
W_INVASIVE_01_10	A	A	A	A	-
W_INVASIVE_01_11	A	A	A	A	-
W_INVASIVE_01_13	A	A	A	A	-
W_INVASIVE_02_01	A	A	A	A	-
W_INVASIVE_02_02	A	A	A	A	-
W_INVASIVE_02_03	A	A	A	A	-
W_INVASIVE_02_04	A	A	A	A	-
W_INVASIVE_02_05	A	A	A	A	-
W_INVASIVE_02_06	A	A	A	A	-
W_INVASIVE_02_07	A	A	A	A	-
W_INVASIVE_02_08	A	A	A	B-	-
W_INVASIVE_02_09	A	A	A	A	-
W_INVASIVE_02_10	A	A	A	A	-
W_INVASIVE_02_11	A	A	A	A	-
W_INVASIVE_02_12	A	A	A	A	-
W_INVASIVE_02_13	A	A	A	A	-
W_INVASIVE_02_14	A	A	A	A	-
W_INVASIVE_02_15	A	A	A	A	-
W_INVASIVE_02_16	A	A	A	A	-
W_INVASIVE_03_01	B+	A	A	A	-
W_INVASIVE_04_02_I	A	A	A	A	-
W_INVASIVE_04_02_III	A	A	A	A	

Note. The first group is the reference group, and the second group is the focus group. A positive sign favors the focus group, while a negative sign favors the reference group. DIF = differential item functioning, SES = socioeconomic status

^a Combination of Native American, Asian/Pacific Islander, and Hispanic.

Table B3

Ban Ads: Item Differential Item Functioning (DIF) Categories

Item score ID	Male (<i>N</i> = 436) vs. female (<i>N</i> = 435)	White (<i>N</i> = 406) vs. Black (<i>N</i> = 163)	White $(N = 406)$ vs. combination a $(N = 111)$	Low SES: no (N = 271) vs. yes (N = 292)	Number of C DIF (if not 0)
W_BANADS_01A_02	A	A	A	A	-
W_BANADS_01A_03	A	A	A	A	-
W_BANADS_01A_04	A	A	A	A	-
W_BANADS_01A_05	A	A	A	A	-
W_BANADS_01B	A	A	A	A	-
W_BANADS_01C	A	C-	A	A	1
W_BANADS_02AX_A	A	A	A	A	-
W_BANADS_02AX_B	A	A	A	A	-
W_BANADS_02AX_C	A	A	A	A	-
W_BANADS_02AX_D	A	A	A	A	-
W_BANADS_02AX_E	A	B-	A	A	-
W_BANADS_02AX_F	A	A	B+	A	-
W_BANADS_02AX_G	A	A	A	A	-
W_BANADS_02AX_H	A	A	A	A	-
W_BANADS_02AX_I	A	A	A	A	-
W_BANADS_02AX_J	A	A	A	A	-
W_BANADS_02BX_A	A	A	A	A	-
W_BANADS_02BX_B	A	A	B-	A	-
W_BANADS_02BX_C	A	A	A	A	-
W_BANADS_02BX_D	A	A	A	B-	-
W_BANADS_02BX_E	A	A	A	A	-
W_BANADS_02BX_F	B-	A	A	A	-
W_BANADS_03	A	A	A	A	-
W_BANADS_04_I	A	A	A	A	-
W_BANADS_04_III	A	A	A	A	-

Note. The first group is the reference group, and the second group is the focus group. A positive sign favors the focus group, while a negative sign favors the reference group. DIF = differential item functioning, SES = socioeconomic status

^a Combination of Native American, Asian/Pacific Islander, and Hispanic.

Table B4

Mango Street: Item Differential Item Functioning (DIF) Categories

Item score ID	Male $(N = 446)$ vs. female $(N = 412)$	White (N = 422) vs. Black (N = 166)	White $(N = 422)$ vs. combination ^a $(N = 114)$	Low SES: no (N = 287) vs. yes (N = 297)	Number of C DIF (if not 0)
W_MANGO_01_01	B-	A	A	A	-
W_MANGO_01_02	A	A	A	A	-
W_MANGO_01_03	A	A	A	A	-
W_MANGO_01_04	A	A	A	A	-
W_MANGO_01_05	A	B-	A	A	-
W_MANGO_02_01	A	A	A	A	-
W_MANGO_03_01	A	A	A	A	-
W_MANGO_03_02	A	A	A	A	-
W_MANGO_03_03	A	A	A	A	-
W_MANGO_03_04	A	A	A	A	-
W_MANGO_03_05	A	A	B+	A	-
W_MANGO_03_06	A	B+	A	A	-
W_MANGO_04_I	A	A	A	A	-
W_MANGO_04_III	A	A	A	A	

Note. The first group is the reference group, and the second group is the focus group. A positive sign favors the focus group, while a negative sign favors the reference group. DIF = differential item functioning, SES = socioeconomic status

^a Combination of Native American, Asian/Pacific Islander, and Hispanic.

Appendix C
Cronbach's Alphas on Task and Item Raw Scores

PAA	Alp	oha
IAA	Task	Item
Service Learning (PAA 1)	.70	.78
Invasive Plant Species (PAA 2)	.69	.76
Ban Ads (PAA 3)	.69	.76
Mango Street (PAA 4)	.77	.81

Note. PAA = periodic accountability assessment.

Appendix D

Item Response Theory (IRT) Item Fit Statistics

Table D1
Service Learning: Item Fit Statistics

Item	Chi-square	df	p value	Sig.
W_SERVLEARN01	33.76	35	.53	_
W_SERVLEARN02	48.57	39	.14	_
W_SERVLEARN03	36.90	39	.57	_
W_SERVLEARN04	27.27	36	.85	_
W_SERVLEARN05	46.45	38	.16	_
W_SERVLEARN06	27.69	38	.89	_
W_SERVLEARN07	35.63	32	.30	-
W_SERVLEARN08H	34.84	38	.62	-
W_SERVLEARN08G	29.21	30	.51	-
W_SERVLEARN09H	579.45	38	.00	**
W_SERVLEARN09G	34.99	32	.33	_
W_SERVLEARN10H	470.22	38	.00	**
W_SERVLEARN10G	43.59	38	.25	-
W_SERVLEARN11H	28.83	39	.88	-
W_SERVLEARN11G	39.37	29	.10	-
W_SERVLEARN12H	34.45	36	.54	-
W_SERVLEARN12G	43.56	38	.25	_
W_SERVLEARN13H	46.81	29	.02	*
W_SERVLEARN13G	21.54	26	.71	-
W_SERVLEARN14H	25.61	31	.74	-
W_SERVLEARN14G	36.52	29	.16	-
W_SERVLEARN16	150.19	133	.15	-
W_SERVLEARN17_I	123.35	126	.55	_
W_SERVLEARN17_III	118.26	123	.60	_

^{*} *p* < .05. ** *p* < .01.

Table D2

Invasive Plant Species: Item Fit Statistics

Item	Chi-square	df	p value	Sig.
W_INVASIVE_01_01	149.45	150	.50	-
W_INVASIVE_01_02	34.95	32	.33	-
W_INVASIVE_01_03	43.60	35	.15	-
W_INVASIVE_01_04	11.48	13	.57	-
W_INVASIVE_01_05	26.36	36	.88	-
W_INVASIVE_01_06	23.31	32	.87	-
W_INVASIVE_01_07	6.48	11	.84	-
W_INVASIVE_01_08	22.30	14	.07	-
W_INVASIVE_01_09	42.43	32	.10	-
W_INVASIVE_01_10	23.46	31	.83	-
W_INVASIVE_01_11	24.28	18	.15	-
W_INVASIVE_01_13	43.42	34	.13	-
W_INVASIVE_02_01	28.84	23	.19	-
W_INVASIVE_02_02	31.93	31	.42	-
W_INVASIVE_02_03	32.38	37	.69	-
W_INVASIVE_02_04	33.49	34	.49	-
W_INVASIVE_02_05	519.25	36	.00	**
W_INVASIVE_02_06	28.66	29	.48	-
W_INVASIVE_02_07	44.52	23	.01	**
W_INVASIVE_02_08	31.83	21	.06	-
W_INVASIVE_02_09	36.59	29	.16	-
W_INVASIVE_02_10	28.14	28	.46	-
W_INVASIVE_02_11	23.09	25	.57	-
W_INVASIVE_02_12	39.92	38	.39	-
W_INVASIVE_02_13	27.14	24	.30	-
W_INVASIVE_02_14	25.73	23	.31	-
W_INVASIVE_02_15	37.22	28	.11	-
W_INVASIVE_02_16	35.65	23	.05	*
W_INVASIVE_03_01	135.58	121	.17	-
W_INVASIVE_04_02_I	148.28	132	.16	-
W_INVASIVE_04_02_III	121.91	122	.49	_

^{*} *p* < .05. ** *p* < .01.

Table D3

Ban Ads: Item Fit Statistics

Item	Chi-square	df	p value	Sig.
W_BANADS_01A_02	20.70	24	.66	-
W_BANADS_01A_03	61.35	34	.00	*
W_BANADS_01A_04	45.00	38	.20	-
W_BANADS_01A_05	16.54	23	.83	-
W_BANADS_01B	93.58	84	.22	-
W_BANADS_01C	72.54	76	.59	-
W_BANADS_02AX_A	26.48	25	.38	-
W_BANADS_02AX_B	43.22	23	.01	*
W_BANADS_02AX_C	39.70	34	.23	-
W_BANADS_02AX_D	27.02	22	.21	-
W_BANADS_02AX_E	17.07	22	.76	-
W_BANADS_02AX_F	24.87	20	.21	-
W_BANADS_02AX_G	35.87	29	.18	-
W_BANADS_02AX_H	4.22	11	.96	-
W_BANADS_02AX_I	20.89	24	.65	-
W_BANADS_02AX_J	37.57	32	.23	-
W_BANADS_02BX_A	21.73	35	.96	-
W_BANADS_02BX_B	40.11	38	.38	-
W_BANADS_02BX_C	35.98	36	.47	-
W_BANADS_02BX_D	15.82	31	.99	-
W_BANADS_02BX_E	35.69	38	.58	-
W_BANADS_02BX_F	43.11	34	.14	-
W_BANADS_03	157.30	113	.00	*
W_BANADS_04_I	146.55	123	.07	-
W_BANADS_04_III	111.21	116	.61	-

^{*} *p* < .01.

Table D4

Mango Street: Item Fit Statistics

Item	Chi-square	df	p value	Sig.
W_MANGO_01_01	37.12	36	.42	-
W_MANGO_01_02	38.33	31	.17	-
W_MANGO_01_03	30.66	32	.53	-
W_MANGO_01_04	21.99	23	.52	-
W_MANGO_01_05	33.01	31	.37	-
W_MANGO_02_01	157.68	125	.03	*
W_MANGO_03_01	33.77	29	.25	-
W_MANGO_03_02	24.91	23	.36	-
W_MANGO_03_03	34.19	30	.27	-
W_MANGO_03_04	32.92	24	.11	-
W_MANGO_03_05	34.77	33	.38	-
W_MANGO_03_06	164.18	127	.02	*
W_MANGO_04_I	149.85	132	.14	-
W_MANGO_04_III	130.51	108	.07	-

^{*} *p* < .05.