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The Next Generation Science Standards (NGSS) are ambitious in their goals for and demands of 
teaching and assessment, to be sure. Existing science standards are generally believed to lead to 
curriculum and assessments that have failed in preparing high school graduates to appreciate science; 
engage in public discussion of scientific issues; carefully consume and relate scientific knowledge to their 
lives; and, most importantly, acquire the necessary skills (or desire) to enter and succeed in science, 
technology, and engineering careers (Carnegie Corporation of New York & Institute for Advanced Study, 
2007; National Research Council [NRC], 2007; Schmidt, Houang, & Cogan, 2002). As compared to these 
earlier standards, NGSS deemphasizes discrete facts taught and assessed in de-contextualized 
experiences that stifle engagement and limit connections to students’ real-world problems and 
activities. Further, the NGSS consider science education from a developmental perspective, one that 
sequences curricula over multiple years, rather than as separate standards for each grade that are often 
disjointed and incoherent in their broader goals. The conceptual shifts implied by these overarching 
changes in the NGSS have been summarized as follows: 

1. K–12 science education should reflect the real-world interconnections in science.  
2. Use all science practices and crosscutting concepts to teach all core ideas all year.  
3. Science concepts build coherently across K–12.  
4. The NGSS focus on deeper understanding and application of content. 
5. Science and engineering are integrated in science education from K–12.  
6. Science standards coordinate with English Language Arts and Mathematics Common 

Core state standards. 

Taken individually or as a whole, one is struck by the complexity of the NGSS—both the 
complexity of the standards themselves and the complexity of their implications for assessment, 
particularly summative assessment for individual high-stakes accountability reporting. The motivation for 
the NGSS was to design the framework and science standards for instruction and assessment to reflect 
the inherent complexity in scientific understanding and reasoning as it exists in the real world. The 
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increased complexity of the NGSS was purposefully designed to get away from the relative simplicity of 
the previous standards (e.g., discrete, decontextualized knowledge; year-by-year, unconnected 
standards). The earlier, less-complex standards led to overly simplified instruction and assessment that 
did not support the desired outcomes, namely students with the ability to reason, function, and perform 
in scientific contexts. While the purposeful complexity of the NGSS has intended positive effects on the 
validity and utility of scores for improving science learning, it inevitably introduces significant challenges 
for some forms of NGSS assessment. These standards reflect the complexities of modern science, 
specifically through the new call for science instruction and assessment to always intertwine the three 
NGSS dimensions. This is a new demand for assessment and will be difficult to accomplish in summative 
assessments with individual reporting given the prevailing/reasonable state parameters for acceptable 
testing time and cost. In this paper, we discuss three types of challenges for NGSS assessment resulting 
from the complexity in the framework and standards themselves—challenges for task design and scoring, 
challenges for psychometric modeling, and practical and logistical challenges. We then propose three 
general strategies for successful NGSS assessment design: (a) build a coherent system of assessments, (b) 
borrow information from available sources to support and simplify the assessment design, and (c) clearly 
articulate and evaluate assessment design choices relative to the assessment goals.  

NGSS Assessment Use Cases and Challenges 

As assessment developers, our challenge is to develop an assessment that meets as many of its 
goals as possible, in the simplest way possible, which may not be very simple at all. Consider the 
challenge posed to the National Assessment of Educational Progress (NAEP) in 1983 when a policy 
change called for scores to be reported at the latent trait level, rather than at the item level. The 
multistage scaling solution based on complex sampling, spiraled booklet administration, complex 
conditioning models, and plausible values, which continues to shape NAEP designs today, were far more 
complex than what was implemented with other large-scale testing programs at the time (Beaton & 
Zwick, 1992; Johnson & Rust, 1992; Mislevy, Johnson, & Muraki, 1992; Rust & Johnson, 1992; Yamamoto 
& Mazzeo, 1992). In fact, the assessment methodology was so complex that two independent studies 
were commissioned to examine whether such a complex approach was needed. The conclusion of these 
studies was that, given what the policy makers wanted to report on, how they wanted to use the scores, 
what could be supported financially in terms of sample size, and other factors—yes, the complexity was, 
in fact, necessary. If one wanted a simpler assessment system and methodology, then some of the goals, 
objectives, or constraints on the system would need to be sacrificed. The decision is thus one of 
priorities and values. If you value all of the system goals equally, then the result may be a very complex 
solution; if you value a simple solution (i.e., a simple system), then the goals themselves might need to 
be simplified. 

Educational assessment increasingly must serve multiple stakeholders, each of whom wants to 
use assessment results for different purposes. Stakeholders include students, teachers, administrators, 
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policy makers, politicians, and researchers, any of whom may want to use assessment scores in different 
ways. For example, as part of their responsibilities for school improvement, policy makers rely on 
assessment results for decisions on various issues ranging from professional development and staff 
allocation, to program and curriculum selection and evaluation, to monitoring and improving student 
achievement. Herman (2010) lays out the wide array of educational test options that emerge when 
considering the type and form of assessment (annual, through-course, school/district, classroom), the 
type of assessment (end of year, end of course/unit/semester, benchmark, and formative), primary user 
(state, district, school, teacher, parent, student, public), and finally specific use (e.g., teacher/principal/ 
school effectiveness, assigning grades, identify struggling/promising students, inform short-term 
learning). Each combination of stakeholder and purpose defines the specific assessment needs and 
constraints, which suggest particular forms and types of assessment that are more or less appropriate.  

We propose that all of the challenges for NGSS complex assessment are consequences of both 
the increased complexity of the NGSS standards themselves and the need to serve increasingly varied 
uses and stakeholders. A significantly problematic challenge in meeting the needs and constraints for an 
assessment use or a stakeholder may be of little significance for another. Therefore, we begin by making 
more explicit the varied uses, purposes, and contexts that NGSS assessment must serve as a basis for 
discussion of the challenges themselves.  

NGSS Assessment Use Cases 

A use case in systems design describes the actors, information, and processes involved in 
meeting some recurring function, like withdrawing cash from an ATM or updating a customer database. 
An assessment use case describes a configuration of actors, information, and processes that serve a 
recurring assessments purpose. Table 1 lists five use cases that can be envisioned for assessments based 
on the NGSS, each of which differs on one or more dimensions from one another to varying degrees. We 
will use them to bring out some measurement challenges that arise in the form of design trade-offs, 
since in them different people need different kinds of information, have different background 
information, and have different objectives. While each of the use cases differs on one or more 
dimensions, stark differences between Use Case 1, “large-scale ‘drop in from the sky’ accountability 
tests,” and Use Case 4, “formative assessment in a classroom,” make these two particularly useful to 
illustrate why no single assessment will do a good job for all the purposes people might have in mind for 
NGSS. Drawing primarily from these two most common and most dissimilar use cases, we will explain 
how assessments designed to optimize their value for different use cases can look very different from 
one another, yet all still be consistent with NGSS’s view of the nature of capabilities in science and how 
students develop it. We refer less to the other three use cases, as in some senses they represent special 
cases of the formative or summative use cases for which the challenges are mitigated or exacerbated by 
the unique characteristics of that assessment context or purpose. 
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Table 1. Five Use Cases for NGSS Assessment 

Use case Key features with measurement implications 
Large-scale accountability tests 
(States’ RTTT tests) 

Are not directly connected to what students are studying (drop in from the sky, or DIFTS, from students’ perspective). 
Can be high stakes for students, teachers, and/or schools. 
Address standards targeted to grades. 
Basically (samples of) the same material in the same way to all students at the same time.  
Administered at a time chosen by the educational agency (e.g., state), usually toward the end of the school year. 
Student-level scores (?) 
Comparable across students and schools. 
Limited usefulness to individual students’ learning. 

Large-scale educational surveys 
(e.g., the National Assessment 
of Educational Progression, or 
NAEP) 

Are not directly connected to what students are studying (DIFTS). 
Low stakes for students, teachers, and schools. 
Address content framework that overlaps but need not be the same as standards targeted to grades. 
Basically (samples of) the same material in the same way to all students at the same time.  
Administered at a time chosen by the (external) program. 
No student-level scores. 
Comparable across states and reporting groups. 
Not useful to individual students’ learning. 

Summative assessment to assign 
grades/course credit (i.e., end-
of-course tests) 

Are directly connected to what students are studying. 
High stakes for students. 
Can address NGSS content standards and performance expectations, at grade level or not, as appropriate to students and 
course. 
Administered at end of a course that students have studied. 
Results not generally comparable across students and schools in the sense of who and when, even if common forms. 
Useful to evaluate what individual students have been studying. 
Useful target for student learning but otherwise not useful to aid learning along the way. 

Formative assessment in 
classrooms (e.g., quizzes, 
feedback during a project, 
continuous evaluation in an 
online learning system) 

Are directly connected to what students are studying. 
Low stakes for students. 
Can address NGSS content standards and performance expectations, at grade level or not, as appropriate to students and 
course. 
Administered when, how, and to whom it is most useful to guide learning. 
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Use case Key features with measurement implications 
Results not generally comparable across students and schools in the sense of who and when, even if common forms. 
Aiding individual students’ learning along the way is raison d’être.  
 

Research to evaluate 
interventions, curriculum, and 
policy 

May or may not be directly connected to what students are studying—depends on research objective. 
Usually low stakes for students, teachers, and schools. 
Can address NGSS content standards and performance expectations, at grade level or not, as appropriate to research 
objective. 
Results usually generally comparable only within research study. 
Only aids individual students’ learning along the way if it is pertinent to the research study. 

Note. NGSS = Next Generation Science Standards; RTTT = Race to the Top; DIFTS = drop in from the sky; NAEP = National Assessment 
of Educational Progress. 
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Use Case 1: End-of-year summative accountability assessments for administrator reports. 
Annual end-of-year summative assessments for accountability are universal in K-12 education for high-
stakes decisions about school effectiveness. Standardized tests with common forms are administered 
universally to all students across a given state on the same day, at the same time, with the assumption 
that students have had equal opportunity to learn the standards covered by the tests. Mislevy has 
referred to such context-free assessment opportunities as drop in from the sky (DIFTS) assessments 
(Braun & Mislevy, 2005). DIFTS are characterized by lack of contextualization with respect to both 
individuals’ learning histories and their learning environments. DIFTS neither consider whether a student 
has received appropriate instruction on prerequisite skills, nor that student’s motivation and 
engagement in learning and completing the assessment. This is essentially the assessment context 
where we know nothing about students except for how they behave on and respond to an assessment. 
Specifically, scores from accountability tests are intended to be representative of knowledge and 
learning across the entire curriculum for a given discipline in a given year. The validity of these scores for 
the intended accountability purpose—to identify students, classrooms, and schools where teaching is 
not leading to learning—is predicated on an assumption that every student in the state (or in a group of 
states) has been studying the same content in a given grade. This flies in the face of what most 
educators know, which is that not even every child in a single class is maximally benefiting when 
everyone in the class is studying the same thing, at the same time and pace. Thus, very effective 
teachers might design classroom instruction in a way that invalidates the inferences from our DIFTS 
accountability tests. Still, scores from these tests are generally used to document the status and/or 
growth of students’ knowledge absent any information about classroom experiences or opportunity to 
learn. With the high stakes associated with scores in this use case, the design requirements have 
typically emphasized reliability and construct representativeness—with specific focus on curriculum and 
content representation of the tests relative to the grade-level standards.  

Use Case 4: Formative assessment for teachers to plan classroom instruction. Formative 
assessment is a use case of growing interest to K-12 educators and policy makers (Heritage, 2010). 
Formative assessment use cases call for a variety of assessment tools, including tests, observations, and 
other data sources, which are used to identify where a student is in learning relative to where the 
student wants to be. Further, formative assessment results are expected to provide information about 
how to move the student forward in learning through instruction or other learning activities. While 
reliability and validity are important here, as with accountability assessment, the diagnostic nature of 
formative assessment use requires greater attention to the sensitivity of the test items to fine-grained 
models of learning at critical points in skill and knowledge development (Heritage, 2008). Tests designed 
for formative uses are, thus, more likely to require items that probe more deeply into focused sets of 
skills, emphasizing depth versus breath of content, than tests designed for accountability uses. In this 
use case, much more is known about both the student’s past learning and what instructional options are 
available for what to do next. Neither is apparent when we look at the assessment per se—what is on 
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the paper or the computer screen. We will see, however, that these factors have great impact on the 
evidentiary value of an assessment for a given purpose in a given context. 

Having laid out the key NGSS assessment use cases, we turn to discussion of the specific 
challenges introduced for assessment developers and consumers. The discussion is structured around 
three general categories of challenges—task design challenges, psychometric challenges, and practical 
challenges—summarized in Table 2. These challenges manifest differently and take on unique 
significance in the different use cases, making generalized discussion of their implications and solutions 
difficult. Each use case demands particular assessments as artifacts to be designed for particular 
purposes in various feedback loops, and each use case presents its own profile of purposes, constraints, 
resources, and contextualization. Thus, a considerably problematic challenge in one use case may be of 
little significance for another due to the defining attributes and design features that characterize the use 
case itself. Further, while our discussion is structured to address each individual challenge separately, 
the reader will quickly find that they are highly interrelated. Solutions to overcome one challenge will 
immediately have implications for or be affected by another; thus, we will necessarily discuss the 
relationships among the challenges.  

Table 2 Primary Challenges for NGSS Assessment 

Task design and scoring challenges Psychometric challenges  Logistical and practical challenges 

1. Appropriate construct models. 1. Dimensionality assessment  
with complex structure.  

1. Limitations on testing time. 

2. Complex assessment tasks. 2. Scaling and estimation.  2. Increased test development 
costs. 

3. Critical role of technology in  
design and scoring. 

3. Reliability and generalizability 
requirements. 

3. Technology requirements for 
administration. 

4. Larger amounts and more  
varied types of data. 

4. Multidimensional vertical  
scaling and construct shift.  

4. Accessibility and universal 
design. 

Task Design and Scoring Challenges of NGSS 

Choices about item and response format should ideally be driven by the nature of the 
behavioral evidence we need to support our assessment claims. That is, if I want to make claims about 
students’ reasoning about the use of models, then I should design a task that provides evidence about 
how a student uses a model to solve a science problem. One of the most common criticisms of 
traditional educational tests is their predominant use of multiple-choice (MC) and other forced-choice 
response formats for measuring targeted constructs. Considerable debate surrounds the question of 
whether these traditional assessment tasks provide evidence to support claims about higher order 



 

9 

thinking skills (Gorin & Svetina, 2011; Haladyna, 2004). While these items can be designed to reflect 
higher order reasoning and cognitive processes1, more often than not, MC items, as one usually 
encounters them, tend to elicit student responses that are evidence of discrete knowledge, rote 
memorization or recall, or low-level cognitive reasoning.  

So why, one might ask, are MC questions the dominant item format on educational tests? First 
and foremost, because the assessment community understands how to write them, score them, and 
psychometrically model them. History has shown that well-written MC items can yield internally 
consistent, unidimensional scales that encompass a wide range of content in a relatively short testing 
time. Fundamental assessment development principles require multiple bits of evidence about a 
construct to achieve sufficient score stability and generalizability to support associated high-stakes 
decisions (Green, 1978). Thus, MC items fit one traditional educational assessment design challenge—to 
achieve high reliability for individual student scores representative of a large number of discrete content 
and performance standards.  

As education standards have increasingly emphasized higher order cognitive processes, 
assessment developers have responded by including short and extended constructed response items, 
most notably essays, on their high-stakes assessments. Both in terms of face validity and construct 
validity, the use of essays and short-answer items is appealing in that the assessment tasks and 
associated scoring rules are more obviously aligned with the targeted reasoning and higher cognitive 
skills. However, even with the more extended response formats offered by these items, several 
inherited attributes of traditional assessment tasks persist. First, most high-stakes tests are 
administered via paper and pencil. This restricts the type of stimuli that can be presented in item stems, 
as well as the types of behaviors that students can demonstrate in their responses (Quellmalz & Haertel, 
2004). Second, performance items, while written to capture more cognitively complex constructs, are 
still designed to optimize other traditional design features. For psychometric reasons, items are written 
to be statistically independent. In practice, this results in multiple relatively decontextualized (or at least 
contextually distinct) items, each of which is treated as a separate problem-solving task. Given that the 
majority of real-world problem-solving activities are highly contextualized, dependent upon one 
another, and multidimensional in nature, the artificial tasks that make their way on to traditional 
educational tests are unrecognizable in terms of their real-world significance. To the extent that the 
constructs measured by these items are a function of task design, we miss the mark of measuring the 
real-world knowledge, skills, and abilities that we sought to assess with the use of performance tasks 
(Champagne, Kouba, & Hurley, 2000; Quellmalz & Haertel, 2004). 

                                                           
1 For example, in Microsoft and Cisco certification exams, there are tasks that require relatively short explorations 
and interactions in a simulated network environment, and the examinee is asked to answer a set of MC items 
about properties, problems, solutions, interaction characteristics, and so forth of the network. Such MC items 
capture evidence of high-level reasoning and strategies, and involve interaction and cycles of inquiry. 
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The initial challenge for NGSS measurement is, therefore, to design tasks that elicit the rich 
cognitive processes that define the hard-to-measure constructs as they were conceived and drafted by 
the standards’ authors. This requires, first, that we have sufficient understanding of the construct itself, 
at an appropriate grain size, to design tasks that engage students in the appropriate knowledge, skills, 
and abilities (KSAs). Then we must have the capability to design tasks that elicit the appropriate set of 
skills. With respect to the appropriate model of the construct, the NGSS themselves provide descriptions 
of the intended KSAs at a particular grain size. However, it is unclear whether they are sufficiently 
detailed or presented in a manner that can be easily translated into assessment tasks. It is more likely 
that, to generate appropriate assessment tasks of the intended NGSS KSAs, more cognitively rich models 
of the constructs are needed (Gorin, 2006; Gorin & Embretson, 2012; Leighton & Gierl, 2011).  

Competency models, learning progressions, and other emerging knowledge representations 
from the cognitive and learning sciences offer significant promise for complex task design (Briggs, 
Alonzo, Schwab, & Wilson, 2006; Corcoran, Mosher, & Rogat, 2009; Gorin, 2006; Heritage, 2007, 2008). 
Whereas performance standards as a basis for item and task development are typically framed in terms 
of behavioral outcomes, learning progression and the like describe the nature of cognitive processes, 
the representations that students hold about a problem or discipline, and the habits-of-minds that 
govern how students approach the problem-solving endeavor. These more cognitively based models are 
most critical, particularly for the formative assessment use case in which the goal of the assessment is to 
use student performance data to make fine-grained inferences about their current learning and to plan 
future learning activities. Given the historical emphasis on summative assessments for accountability, it 
is not surprising that the behavioral grain-size inherent in traditional construct definitions and 
performance standards have been sufficient for assessment task design. Perhaps for the accountability 
use case, the more traditional task types aligned to behavioral performance standards are sufficient. 
This would then imply that we need multiple representations of our constructs, at multiple grain sizes, 
to support multiple task types, each suited to its particular purpose—a view consistent with the notion 
of a system of assessments as opposed to a single test to serve all purposes. 

The second task design challenge is that the tasks must be designed to give rise to observable 
pieces of evidence (i.e., data) that can be scored in terms of the complex claims (i.e., multidimensional, 
hard-to-measure constructs). Response formats for various item types have been compared by several 
researchers in terms of their level of constraint imposed on the students’ response (Scalise & Gifford, 
2006; Wilson, 2004). The most constrained items, those with fully selected response formats, like MC 
and true/false items, are easily scored but provide a single, limited data point from which we can make 
inferences about students’ knowledge. The least constrained tasks, those with “fully constructed” 
response types, include projects, portfolios, interviews, and performances (Scalise & Gifford, 2006, p. 5). 
The responses captured in the less-constrained formats provide more varied evidence sources, including 
those associated with the more cognitively complex KSAs targeted in the new standards. That said, the 
more open response formats pose challenges of their own in terms of scoring and reporting, a fact that 
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has motivated an entire field of research on human and automated scoring of essays on high-stakes 
tests.  

While it is unlikely that there is a single solution to the NGSS assessment task design 
requirements, research and development in the learning sciences would suggest one certainty—the 
critical role of technology. Moving away from the traditional paper-and-pencil format into a digital 
assessment platform releases many of the constraints highlighted above. Through technology-enhanced 
assessment tasks, rich stimulus materials including multimedia, virtual reality, and multimodal 
capabilities can be provided to set the problem-solving stage for an assessment activity. Research in the 
cognitive and learning sciences has produced innovations in technology-enhanced learning tools to 
address the shortcomings of traditional standards-based instructional design. Digital environments have 
been designed to create authentic, engaging, and challenging learning activities. These interactive 
learning tools, including simulation systems, intelligent tutoring systems, and educational games can 
provide the multidimensional, contextualized problem space that adheres to the rich set of KSAs like 
those of the NGSS (Behrens, Mislevy, DiCerbo, & Levy, 2012; Rupp, diCerbo et al., 2012; Rupp, Gushta, 
Mislevy, & Shaffer, 2010). Further, by virtue of their digital design, they can capture more, and more 
varied, data during and at the end of student problem solving (Rupp, Nugent, & Nelson, 2012). The 
variety of innovative response formats increases significantly just with the availability of a few basic 
technologies such as drag and drop, highlighting, equation editing, and graphing. At its most extreme, 
the notion of a response format is rendered irrelevant in that data from student interaction is streaming 
in real time with every click, keystroke, or other interaction being recorded by the technology. DiCerbo 
and Behrens (2011) write of the “digital ocean” that is available from technology-enhanced learning and 
assessment activities that can be mined as evidence of our targeted KSAs. There are seemingly limitless 
data that could be mined to inform and predict student learning, all seamlessly embedded within very 
naturalistic assessment and learning activities (Shute, 2011). 

Not only can data from these and other more open-ended tasks be captured automatically, but 
also there is increased potential for automated scoring of responses (Williamson, Mislevy, & Bejar, 
2006). Returning to Scalise and Gifford’s (2006) taxonomy of response formats, they specifically point 
out cells for which automated scoring is feasible. As automated scoring technologies continue to 
develop and improve, even more cells in this matrix will become automated scorable. Designing 
assessments that maximize use of auto-scorable formats could get the most bang for the buck in 
evidentiary value, for a given cost. Significant effort has gone into automated scoring of essay-like 
responses because they are both important and familiar, but other applications in non-essay formats 
can be even more advantageous (Williamson et al., 2006). This is especially so in science, since so much 
of scientific reasoning is carried out through representations and symbol systems. Student diagramming, 
concept mapping, modeling, data collection, and even simulated laboratory experimentation all have 
the potential for automated scoring, which could serve to offset the cost of the increased complexity 
associated with complex technology-enhanced tasks. 
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With all of the research and development efforts on technology-based tools for learning hard-
to-measure constructs in science, NGSS complex task design seems a surmountable challenge. The tools 
and technologies emerging from the cognitive and learning sciences to improve instruction and student 
learning should lend themselves quite nicely to the formative assessment use case (Heritage, 2008, 
2010; Quellmalz & Haertel, 2004; Scalise, 2012). In formative assessment, the intent is for scores to be 
used as feedback to teachers and students to direct subsequent learning activities. The types of rich 
learning activities that are likely to provide evidence for this purpose are, by design, highly 
multidimensional and deeply contextualized within the classroom context and the embedded curricular 
program. The assessment tasks must be designed to elicit evidence aligned with models of student 
learning and teachers’ instructional practices. Furthermore, the evidence from these tasks must be 
effectively communicated to teachers and students in a way that can support decisions about how to 
proceed in learning and instruction. With the lines between formative assessment, learning, and 
instruction blurred, these tools are obvious choices for NGSS assessment tasks that provide 
instructionally relevant information for students and teachers about the hard-to-measure constructs of 
interest. 

The accountability use case is another matter. In the accountability use case, the psychometric 
and validity requirements of content coverage, correctly specified dimensionality, scaling, equating, 
reliability, and generalizability are of relatively larger importance than the issue of instructional 
relevance, as was the case in the formative use case. Whether and how the proposed complex, context-
rich, technology-enhanced tasks can be used in the DIFTS context of accountability assessment is the 
largely unanswered question. The challenge in this use case stems in part from the ambitious breadth of 
content and skills most end-of-year assessments target, as well as the fact that we have little context or 
information about students other than the data generated from the assessment itself. In the formative 
use case, scores can be interpreted with full knowledge of the specific content, context, and format of 
instruction. For summative accountability testing, we have no such luxury. Rather, either we must 
assume that instructional content, context, and format (including the use of technology-supported 
tools) is sufficiently equivalent across students to have negligible effects on performance, or we must 
design assessments that sample broadly to average out any differential effects on individual student test 
performance.  

NGSS Performance Expectations 
The effect of content, context, and format on the generalizability of score interpretations for 

particular assessment tasks can be tempered or exacerbated depending on the degree to which these 
factors vary across and within instructional and assessment activities. The NGSS architecture 
intentionally gives considerable latitude for instructional and assessment design choices through the use 
of performance expectations as the definitional form of the standards. Performance expectations are 
the assessable statements of what students should know and be able to do and are written to combine 
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the three NGSS dimensions. While they provide descriptions of the achievements all students should be 
able to demonstrate, they do not translate directly into any single instructional activity or assessment 
task.  

In drafting the standards, NGSS authors initially sought to define performance expectations 
combining the practices and cross-cutting concepts within each appropriate disciplinary core idea as 
explicitly stated in the framework. However, using verbatim the detailed developmental progressions 
used to define the core ideas resulted in “bulky” statements that were difficult for readers to interpret 
and understand how to apply. Ultimately, the NGSS authors elected to write performance expectations 
“to communicate a ’big idea’ that combined content from the three foundation boxes” (NGSS Lead 
States., 2013b, p. 2). For defining learning outcomes and goals as intended by the performance 
expectations, this is understandable– we want to know that students emerge from science and 
engineering education with competency in the key practices and concepts as they interact with core 
disciplinary ideas. However, while performance expectations as definitions of learning objectives may 
focus on “big ideas,” instructional and assessment activities designed to mimic real-world problem 
solving require specificity with respect to context and format. We can encounter serious limits when we 
define skills in a decontextualized way and assess them as such or make inferences from performance in 
one domain to a different domain. This is manifest as low generalizability in the measurement frame, a 
point we return to shortly. To assist in making decisions about specific instructional and assessment 
tasks, the NGSS includes clarification statements for many of the performance expectations provide 
some guidance as to some of the contexts in which one might develop activities measuring the 
expectations. These statements serve to highlight the fact that there are a variety of contexts, each with 
its own context-specific content knowledge, in which one might choose to teach or assess the same 
expectation across classrooms. Using these clarification statements in conjunction with the performance 
expectations, and the individual descriptions of the targeted practices, ideas, and concepts, choices will 
need to be made about the particular instructional or assessment tasks.  

Let us consider a specific performance expectation within the Earth and Human Activity 
Disciplinary Core Idea (DCI) for the 3rd–5th grade NGSS band: 4-ESS3-1. Obtain and combine 
information to describe that energy and fuels are derived from natural resources and their uses affect 
the environment. In addition to three Earth and Human Activity DCIs—Natural Resources, Natural 
Hazards, and Designing Solutions to Engineering Problems—this performance expectation was 
developed to incorporate two practices—(a) Constructing Explanations and Designing Solutions and (b) 
Obtaining, Evaluating, and Communicating Information—as well as two crosscutting concepts—(a) 
Cause and Effect and Interdependence of Science, Engineering, and Technology and (b) Influence of 
Engineering, Technology, and Science on Society and the Natural World. To measure this or any 
performance standard, a variety of assessment tasks could be design, each of which differs in terms of 
the task format and scientific problem solving context. The clarification statement for performance 
expectation 4-ESS3-1 reads  
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Examples of renewable energy resources could include wind energy, water behind dams, and 
sunlight; non-renewable energy resources are fossil fuels and fissile materials. Examples of 
environmental effects could include loss of habitat due to dams, loss of habitat due to surface 
mining, and air pollution from burning of fossil fuels. (NGSS Lead States, 2013a, para 1.) 

While a teacher may elect to design instructional activities about wind energy and air pollution, 
an assessment task his students are administered may address water behind dams and loss of habitat. In 
making these choices, there are potential consequences for the validity and generalizability of our score 
interpretations that will be based on whatever choices are selected in the various classrooms.  

Flexibility in instructional and assessment contextualization presents an opportunity for the 
formative use case in which a teacher can select formative assessment tasks that match the 
characteristics of the instruction—matching context, format, and context-specific content knowledge. 
When selecting and using a formative assessment task, the teacher can either select a task that uses an 
identical context to that used in the classroom instruction or, at the very least, consider any differences 
in the context of the assessment and the instruction when interpreting students’ performance. This 
increases the likelihood that the assessment data will be used to make valid inferences about the skills, 
ideas, or practices the teacher wanted to assess. In short, this flexibility in the NGSS can strengthen 
assessment evidence, as well as learning, in instructional, formative, use cases. 

The degrees of freedom offered for instruction and assessment that benefit formative use case 
are more problematic in the summative accountability use case. For large-scale summative 
accountability assessment, it is impossible for all characteristics of a given assessment task to reflect 
instruction equally for all students. Further, the inferences we want to make from these tests are about 
the more broadly defined set of standards, rather than the more focused target of measurement 
associated with a particular instructional unit. As mentioned earlier, the current strategy for educational 
assessment is to build tests with multiple discrete items, which tends to wash out any content effects 
associated with a single task context or content. If, as we argued earlier, MC items are unlikely to 
capture the hard-to-measure NGSS dimensions of interest, then the MC item solution is not an option. 
Alternatively, a test with a small number of rich, scenario-based, technology-enhanced tasks, as we have 
recommended, would be appropriate if it could be established that the three NGSS dimensions are 
defined in the various performance expectations and are generalizable across any particularities of the 
specific task. That is to say that the particular context (i.e., format, context-specific content) in which 
instruction occurs has relatively minor impact with respect to the context in which it is assessed—the 
skills, practices, and concepts are generalizable to problem solving across tasks. Further, performance in 
a small number of highly contextualized tasks would be need to be found sufficient to make inferences 
about the NGSS dimensions that generalize across any context.  

Considerable research in cognitive psychology and problem solving suggests that this is not the 
case (Mayer, 1992; Newell & Simon, 1972; Smith, 1991; Sternberg & Frensch, 1991). Though generalized 
knowledge that is applicable across domains is useful, context-specific knowledge is often required to 
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successfully solve a problem. Ruiz-Primo and Shavelson (1996) specifically addressed this issue with 
respect to performance assessment in science, stating that “whatever performance assessments are 
measuring about science understanding is sensitive not only to the task and occasion sampled, but also 
the method used to assess performance” (p. 1051). They concluded that not only would the technical 
quality of performance assessment require greater scrutiny than brief discrete tasks, but that a large 
number of performance assessment tasks are needed in order to yield generalizable measures of 
achievement. Thus, the use of any single contextualized task to assess a given performance expectation 
could introduce significant bias in measuring individual students. Proficiency might be under or over 
estimated relative to estimates yielded from a different assessment task. Further, students who have 
not received instructional tasks with the same specific content knowledge area, context, format, and 
technology in which it is assessed will be disadvantaged relative to students for whom the instructional 
and assessment tasks are more closely matched. It would appear, therefore, that the strengths of the 
highly contextualized tasks which offer promise for capturing the complex NGSS elements could become 
their biggest liabilities in the summative accountability assessment use case. Moving toward the more 
complex task types introduces challenges for our repertoire of assessment design practices and tools, a 
point we will consider next from a more psychometric perspective.  

Psychometric Challenges of NGSS Assessment 

Psychometric challenges for NGSS assessment are driven by two related factors, the nature of 
the NGSS themselves and the new task types that they require. The direct impact of the NGSS on 
psychometric modeling stems from the explicit multidimensionality in the construct as defined by the 
standards. The indirect impact comes through the characteristics of the tasks required to measure the 
NGSS. As described previously, it is likely that the tasks needed for formative and accountability NGSS 
assessment will violate many of the assumptions and capabilities of our traditional psychometric 
repertoire. Tasks are likely to be scenario based, using a common problem-solving context that creates 
dependencies between the items. Further, the testing time for any given extended performance task 
will be lengthy and will limit the total number of tasks a student can be administered. Finally, student 
responses will generate new data sources, including continuous behavioral data, that do not conform to 
our traditional models for dichotomous or polytomous item responses. In sum, the psychometric 
challenges introduced either directly or indirectly by the NGSS include the need for appropriate models 
to assess dimensionality, to estimate item and person parameters, and then to report out reliable and 
generalizable scores reflective of status and growth on each of the dimensions targeted.  

Dimensionality assessment. A prerequisite to almost all test score scaling and score reporting is 
the appropriate dimensional specification. That is, in order to properly scale individual students’ 
responses and provide reliable and valid scores to represent status or growth, we must know how many 
scores should be reported, what they represent, and how they are related to one another. When 
dimensionality is improperly specified, specifically underspecified, this is both an issue for assessment 
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development (e.g., when trying to select items to retain or discard) and in scoring. Various approaches 
to dimensionality have been developed to aid test developers in the design and scoring of test data that 
maximize reliability and validity. 

For the majority of operational educational testing programs, the dimensionality issue would be 
better characterized as the unidimensionality issue, where unidimensionality is the goal and 
multidimensionality is explicitly avoided. Items that show multidimensionality are removed or revised to 
yield a test with scores that conform to a unidimensional model. It is unclear whether this has been the 
tradition because we have typically been interested in measuring unidimensional constructs, or whether 
we have chosen to focus on unidimensional constructs because we are far more comfortable with 
unidimensional models and associated tests. Regardless of the motivation, as a result, our psychometric 
tools to assess dimensionality have been well designed and researched in terms of their ability to 
identify unidimensional structure or violations thereof (e.g., DETECT; Zhang & Stout, 1999). These tools 
help us, first, in the development process, to select, remove, or edit items that do not conform to 
unidimensionality. They can also contribute to our validity argument in providing evidence to justify 
scaling and reporting on a single unidimensional scale.  

Several methods are available to explicitly test multidimensional structure in our high-stakes 
tests. Among the various methods (e.g., posterior predictive model checking, nonlinear factor analysis, 
DETECT index), research has shown that under certain conditions, we can detect multidimensionality 
quite well (Gierl, Leighton, & Tan, 2006; Svetina, 2011). One of the best conditions for detecting 
multidimensional structure is the case of simple structure, where each item measures one dimension 
with multidimensionality at the test, rather than the item, level. These procedures are less effective at 
detecting multidimensional complex structure in which items on a test may measure multiple constructs 
to varying degrees (Levy & Svetina, 2011; Svetina, 2013). Yet, it is exactly the situation that is likely to 
arise from properly designed measures of the NGSS standards.  

The NGSS framework requires that instruction and assessment integrate three types of 
dimensions—practices, crosscutting concepts, and core ideas. If implemented as prescribed, each 
standard would integrate one practice, one crosscutting concept, and one core idea into each 
performance objective, driving both instruction and assessment. NGSS assessment tasks should yield 
data that reflect all three types of dimensions to greater or lesser extent, each of which is intended to be 
“reported out on” for either accountability or formative purposes. Consider the example given in the 
NGSS framework document describing how the three dimensions might be combined based on 
Organization for Matter and Energy Flow in Organisms (LS1.C), a part of the first core idea in the life 
sciences. The framework authors suggest that by the end of 5th grade, students should be able to 
“Explain how animals use food and provide examples and evidence that support each type of use.” They 
detail the criteria for performance in terms of the accuracy and completeness of explanation, with an 
emphasis on proper argumentation, including use of evidence and diagrams specific to the particular 
concept in the life sciences. Within this single task, assessment claims include inferences about students’ 
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knowledge of properties of living organisms and their need for energy (disciplinary idea); their ability to 
develop arguments with claims and evidence (practices); and their understanding of patterns, similarity, 
and diversity across living things, including matter conservation (crosscutting concepts). The intent is for 
assessments to use these performance expectations across multiple items to measure the population of 
grade-relevant standards. The resulting data from such a test comprised of such items are likely to 
manifest complex structure, with various mixtures of the three dimensions contributing to individual 
scores from individual test items and tasks. In other words, if properly designed, NGSS tests are likely to 
generate the conditions that are the most challenging for our repertoire of dimensionality assessment 
tools. Test development for NGSS tasks will be challenging in so far as assessing the complex 
dimensional structure is a necessary prerequisite to scaling and reporting.  

Scaling and estimation. After an appropriate dimensional solution is reached, there remains the 
challenge of estimating model parameters for the items and the examinees. Selecting the proper 
model—compensatory versus noncompensatory, conjunctive versus disjunctive, 1PL versus 2PL versus 
3PL—as well as properly estimating the item parameters, can be challenging for most operational 
testing contexts, not to mention the specific case of NGSS with its complex item formats and all that 
they entail (i.e., item dependencies, lengthy testing times with few tasks). As compared to their 
unidimensional counterparts, the multidimensional models can present more complex computational 
requirements. The increased number of parameters to estimate, including both the individual 
dimensions and their intercorrelations, place greater requirements on sample size, test length, and 
distributional characteristics of people and items (Béguin & Glas, 2001; Zhang, 2012). Item parameters, 
when estimated with insufficient sample sizes or samples with ability distributions poorly matched to 
the item characteristics, will be difficult to scale. Conversely, items with poorly estimated parameters 
will lead to inaccurate and unreliable ability estimates for examinees. Recent advances in 
multidimensional psychometric models, including multidimensional item-response theory (MIRT) 
models and Bayesian inference networks (BINs), offer promising tools for accurately estimating multiple 
correlated abilities underlying student performance on complex assessments (Jensen, 2001; Junker & 
Sijtsma, 2001; Martin & VanLehn, 1995). Further, models designed specifically to account for 
dependencies arising from common or shared stimuli (e.g., a common reading passage, a shared 
scenario or context) across items, including testlet models, are available to handle specific sources and 
structures of multidimensionality on existing assessments (Wainer, Bradlow, & Wang, 2007). 

Having the appropriate tools available to model multidimensional data only solves the problem 
of access to useful models; it does not ensure that they can be leveraged for improved NGSS 
measurement. A popular approach to psychometric modeling of assessment data is to survey the 
available models, fit them, compare them, and then select the appropriate model. However, it is our 
belief that selecting a model will not be good enough. What is needed is building a proper model from 
pieces, some of which are familiar structures in familiar models but others which are not, is necessary. 
Some models (e.g., Bayesian network models, the Generalized Diagnostic Model [GDM], von Davier, 
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2007) and some statistical software packages (e.g., Mplus, Muthén, & Muthén, 1998; WinBUGS, Lunn, 
Thomas, Best, & Speigelhalter, 2000) have model-building capabilities. However, building complex tasks 
and expecting psychometricians to figure out after the fact how to build models is a bad way to proceed. 
Even differences that seem minor on the surface can have huge modeling implications and evidentiary 
value implications. The psychometric model-building process must begin much earlier, when we are 
defining the intended score uses and interpretations in terms of the necessary evidence and the 
statistical model that will link them. Better to develop a family of inferential structures at the outset 
around which unique tasks can be developed—so that they (a) can be unique and creative, but (b) for 
which we know in essence how to score them and how to accumulate evidence up front (Mislevy, 
Steinberg, Breyer, Almond, & Johnson, 2002). The scoring is designed in, jointly with the substance, and 
has understood psychometric frames.  

Conceding the general challenge of multidimensionality for NGSS assessment, the issue does not 
necessarily impact all use cases equally. From a statistical perspective, dimensionality is defined in terms 
of what is needed in a model for particular data to achieve satisfactory approximation to conditional 
independence. Dimensionality arises from the interaction of tasks and population, such that the same 
tasks can be high dimensionality in DIFTS use but low dimensionality when used in instruction. This point 
is neither obvious nor unimportant. One hears many very proficient psychometricians and statisticians 
speak of “the dimensionality of a test,” and they do so implicitly assuming a particular population and 
use case, without qualifying their interpretation. Lord (1976) asserted that dimensionality is a function 
of instruction and the instructional sensitivity of an item. Thus for two groups of students (i.e., students 
in different classrooms), one of which received instruction on a set of test items and the others not, test 
performance on these items that would otherwise have been unidimensional will show additional 
dimensions. Further, even for a single group of students who have all received the same instruction, the 
multidimensionality intended in an item may not be evident in the response data. For example, given a 
set of items designed to measure specific ideas, concepts, and practices, when administered to a 
population of students who have all mastered the ideas and concepts, the data will conform to a 
unidimensional model that reflects only variability in practices. This does not make the items any less 
valid in terms of their reflection of the dimensions listed in the standards—knowledge of the ideas is 
required to answer the items. It is simply the case that the data can be fit with a unidimensional model 
due to the nature of the items in relation to the testing population. Thus, if what is intended by the 
multidimensionality of the NGSS structure is the opportunity to produce scores for each of the three 
dimensions that could prove diagnostic, it will not be sufficient to consider how the tasks are design, but 
rather one must understand how the dimensions are reflected in the items relative to the population of 
test takers and their exposure to instruction. 

Given that, in the formative use case, we have considerably more information about what an 
individual or classroom of students know (or at least what they have been exposed to through 
instruction), the complex dimensionality that would otherwise emerge in our data may be simplified. 
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Thus, the dimensionality challenge manifests itself not merely across different populations, but 
conceivably across different use cases in which population distributions have unique characteristics 
(e.g., a classroom population for formative assessment vs. a state population for accountability testing). 
This psychometric inconsistency offers a solution for the dimensionality challenge in the formative case. 
For accountability assessment, solutions to the psychometric challenges are less clear. While advances 
have been made in developing appropriate complex psychometric tools through simulation and 
theoretical research, it has yet to be seen whether such approaches can be supported under the 
practical constraints of limited testing time, breadth of content coverage, and highly dependent 
observations like those generated from the recommended NGSS assessment tasks.  

While the most recent multidimensional models and estimation algorithms offer the possibility 
to estimate multiple abilities from a limited set of assessment tasks, there remains the question of 
whether one should attempt to do so. Even when parameter estimates can converge on stable values, 
the multidimensional inferences about individuals are less efficient than a simpler model. With a limited 
number of observables (i.e., items or tasks), there is a limited amount of information that can be 
extracted. It is a consequence of the fact that when multiple unknown factors are driving a relatively 
small set of observed data, there are multiple competing hypotheses that could explain the observed 
data. As previously argued, to the extent that we have some local information about individuals’ 
abilities, knowledge, context, and learning experiences, which contribute to their test performance, 
tasks that are multidimensional in theory can be fit with simpler models and provide more useful 
information on the specific unknown factors. The bottom line is that the multidimensional structure of 
the construct implied by NGSS can likely be captured via complex psychometric modeling of increasingly 
complex tasks; however, we should not expect that these models will work like the simple tasks and 
models used for the more traditional unidimensional standards. What may be more likely is that the 
complex assessments can provide useful information about trends in learning and thinking for groups of 
students, rather than for individual students (National Research Council [NRC], 2006). It remains to be 
seen whether our existing or emerging assessment capabilities can support individual score reports on 
multidimensional constructs without additional context (i.e., DIFTS assessment).  

Reliability and generalizability. Though the issue of score reliability is part and parcel with 
scaling and estimation, the topic is of sufficient importance that it deserves explicit consideration. We 
have remarked repeatedly that traditional forced-choice, MC items have dominated high-stakes testing 
due in part to their conformity to our well-researched psychometric theory. Theories and methods for 
increasing score reliability and generalizability are certainly among these. In classical test theory, 
reliability is increased through repeated measurement of the same construct with parallel items for 
which random error can be averaged out over each individual item response. Simply put, the longer the 
test, the higher the reliability can be.  

Generalizability, a form of reliability, addresses the specific issue of whether, in fact, 
measurements based on one particular item or test, with its own idiosyncracies and task-specific 
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characteristics, will remain stable across other items, also with their own specific characteristics. To the 
extent that any item brings with it particular context, content, or other design features that are not part 
of the design, increasing the number of items on a test can allow for these factors to have minimal 
effect on our estimates of the targeted construct(s). Extending the logic of longer tests for increased 
reliability—longer tests, with more varied contexts and items (all measuring the same construct) will 
lead to more reliable and generalizable test scores. With constraints on testing time, the strategy of 
lengthening tests requires that items themselves be relatively short, to allow for administration of large 
numbers of items.  

Modern test theory, specifically item-response theory (IRT), provides psychometric models that 
can allow for shorter tests to yield comparable reliability to longer ones, under certain conditions. 
Specifically, if test items are selected to provide maximum information about students by targeting their 
specific ability level, then fewer items need be administered to achieve targeted levels of precision in 
our ability estimates. To address one aspect of generalizability, adaptive testing algorithms that leverage 
IRT models for shorter tests are typically administered with additional specifications regarding the range 
of item content, format, genres, and so on for any test form. Each student must see a sufficient number 
of items across the representative content areas and item types on a given test in order for the test 
scores to be considered valid. Again, allowing for the use of MC or other selected-response item formats 
allows these requirements to be met without excessive testing times.  

Considering these standing practices for increasing score reliability and generalizability, one 
should become immediately concerned with the compatibility of our recommendations for lengthy, 
highly contextualized, tasks for NGSS assessment, particularly in the summative/accountability high-
stakes use case. For use cases in which priority is placed on generating instructionally relevant 
information about students’ learning and cognition or instructional effectives, as in the interim, 
formative, and evaluative use cases (Use Cases 3–5), these tasks are necessary for generating 
appropriate evidence to support the desired use. However, the features of these items that make them 
so powerful in those use cases are exactly what makes them challenging for reliability and 
generalizability, which are the priorities in the large-scale use cases (Use Cases 1 and 2). Put simply, the 
issue is a trade-off between depth and breadth of coverage, both statistical and substantive. With 
limited testing time, only a small number of the recommended complex assessment tasks would be 
feasible. Given the dependencies that exist among items associated with a common stimuli, there is 
concern as to whether sufficient independent pieces of information are provided (a la parallel forms) to 
yield reliability in our score estimates. Even if there were several discrete items within a single complex 
task, the need to assess multiple dimensions would limit the opportunity to assess any one of them with 
large numbers of items.  

Though not among our two highlighted use cases, complex survey assessments—like NAEP—
that target group-level achievement claims may offer the optimal conditions for lengthy assessment 
tasks that limit the number of items seen by each individual student (see Use Case 2 in Table 1). 
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Arguably, standards for reliability are relevant only at the level of the target inferences. Thus, for NAEP, 
the reliability of individual student-level score is of less importance than the reliability and validity of the 
subgroup means. It is exactly this type of use case–specific variation that should be considered at the 
outset of assessment design. Use cases in which the cost to reliability resulting from increased 
complexity in task design provide the greatest opportunity to maximize the benefits of lengthy tasks. 
The cost to reliability may be too great for the accountability use case in which individual student scores 
are used for high-stakes decisions. Educators must acknowledge, however, that it is unlikely that we can 
maximize reliability at the individual score level and maximize the instructional utility and diagnostic 
value of scores. As the Board on Testing and Assessment (BOTA) report (NRC, 2006, p. 30) points out, 
three states tried to develop a single assessment to leverage both depth and breadth of coverage. All 
students were tested on limited subsets of standards, allowing for the use of the complex assessment 
tasks that would give the depth of information wanted. Every student was tested on some part of the 
standards, and all standards were measured for at least some students. However, this solution to the 
complex system demands did not satisfy the customer—public demand and fiscal limitations. The public 
was not willing to compromise on individual student score reports, and a completely parallel system 
with both individual and group level targets was not feasible, a point that will be revisited in discussion 
of logistical and practical challenges to NGSS assessment.  

With respect to generalizability, the use of a small set of complex tasks challenges our approach 
to content and item format sampling to achieve generalizable scores. Additional evidence would likely 
be required to support the claim that students’ behavior in one or two specific contexts is sufficient to 
make generalizable conclusions about general proficiency on science practices, core ideas, or 
crosscutting skills. Current research on complex scenario-based assessment suggests that each task2 
could require 30to 45 minutes, which clearly places a limit on the number of independent tasks that can 
be administered and used to estimate student abilities. Without more information from a broader range 
of tasks, the possibility of any psychometric model producing generalizable results is low. Thus, while 
this challenge may have psychometric solutions, it is more likely that what will be needed is creative task 
design to create generalizable contexts. The challenge will be to identify contexts and tasks that are 
sufficiently generalizable, but without making them so context-free that they lose their meaning in 
terms of real-world science problem solving, as mandated by the NGSS framework.  

Vertical scaling and construct shift. Our final psychometric challenge relates to our previous 
discussion of multidimensionality, but with a more targeted focus—multidimensionality when 
measuring growth due to construct shift. NGSS standards are designed to articulate skill development 
across grades that should be reflected in the curriculum and associated assessments. This implies a 
desire to use assessment scores to monitor students’ progress as they learn and develop science 

                                                           
2 Task here refers to an intact set of assessment activities that are all associated with a common context, scenario, 
or other stimulus. 
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proficiency, as defined by the framework. The NGSS explicitly aim to promote assessments that can be 
vertically scaled to permit measures of growth over time on the three major dimensions. The 
appropriateness and feasibility of this goal is simultaneously a psychometric and a substantive one. 
Vertical scaling is a psychometric approach to statistically linking scores from tests designed to measure 
the same construct but at different ages or grades. It is the foundation for measuring growth, a key 
component of most accountability systems for both individual student and teacher performance 
evaluations. However, the appropriateness of vertical scaling, both as a conceptual process and in 
practice with complex psychometric models, makes significant assumptions, not the least of which is 
about the meaning of the underlying construct(s) measured by the vertically equated tests and scores 
(see Kolen & Brennan, 2004 and Carlson, 2011 for comprehensive discussion of vertical scaling). 
Specifically, it is assumed that the construct(s) measured by each of the vertically equated tests is 
properly specified in each of the individual tests, and that the construct(s) is/are the same on each 
measure (Reckase & Martineau, 2004; Wang & Jiao, 2009; Yen, 2007)3. The question of construct 
equivalence is clearly a theoretical one in which we must consider whether, in fact, the nature of a given 
construct at early grades (i.e., in early development) is psychologically, pedagogically, and practically the 
same as at older grades and whether the differences constitute, in fact, distinct constructs, as opposed 
to different locations in terms of sophistication of mental process on the same construct. As a specific 
case of multidimensionality, construct shift—if ignored—can severely compromise our score 
interpretations and resulting decisions. 

Considerable psychometric research has compared the performance of various linking 
approaches under a variety of conditions of student ability distributions, test and item characteristics, 
and dimensional structure (e.g., Kim & Cohen, 2002; Li & Lissitz, 2012; Patz & Yao, 2007; Skaggs & Lissitz, 
1988). Most recently, interest has turned to multidimensional and bi-factor IRT models for more 
accurate linking that leads to more appropriate measures and interpretation of growth than traditional 
unidimensional constructs. Specific research on multidimensionality of science tests for purposes of 
vertical scaling has been explored with success in identifying multiple dimensions associated with 
distinct content under the condition of simple structure (Jiao & Wang, 2008; Reckase & Martineau, 
2004; Wang, Jiao, & Severance, 2005). In these applications, the various content areas were modeled as 
multiple latent dimensions with simple-structure MIRT models, and latent trait correlations were used 
to determine the strength of the relationships among the dimensions. However, as discussed in the 
more general issue of multidimensionality, NGSS tasks are likely to give rise to complex, not simple, 
multidimensional structure. To the extent that we cannot properly model these multiple dimensions, 
vertically scaled scores may lead to erroneous measures of growth and lead to invalid score 
interpretations and high-stakes decisions.  

                                                           
3 Carlson (2001) showed that it is feasible to have a trait that is basically curvilinear but unidimensional within a 
multidimensional space, and suggested that vertical scaling is one situation where this is likely to occur.  



 

23 

It has been suggested that our best tools for successful vertical scaling may not, in fact, be 
psychometric in nature. Rather, Briggs (2012) suggests that successful multidimensional vertical scaling 
hinges on our theoretical definitions of the constructs we want to measure. If we are to properly link 
scores from tests at different developmental levels, then we should do so with full knowledge of how 
those developmental levels are related and with items designed to reflect the shifts in purposeful ways. 
In other words, before trying to statistically link scores, we should have a theoretical justification to do 
so. Rather than traditional scales and construct definitions comprised of lists of increasingly difficult 
content, a better conceptual model is offered by more cognitively and developmentally based 
representations. To this end, learning progressions and other cognitive models of our constructs are 
invaluable. As compared to traditional construct definitions (i.e., test blueprints and lists of discrete, 
disconnected performance standards), learning progressions provide cognitively based descriptions of 
development that directly address our assumptions about construct shift and equivalence (Briggs, 2012). 

Consider the conceptual maps of science strands developed by the Atlas of Science Literacy 
Project 2061 (American Association for the Advancement of Science [AAAS], 2001). The maps represent 
the science domain as a set of interconnected ideas and skills within various content strands and, most 
importantly, how they build upon one another to lead to science literacy. The content and form of the 
maps are consistent with the NGSS standards in that they make more conceptual sense based on what 
we know from the learning sciences. From an assessment perspective, these models provide a strong 
basis on which to design tasks that can be used to provide better feedback to instruction. However, the 
structure does not lend itself as well to our traditional scale linking. Further, it is not the case that we 
expect a student’s cognition and performance to be universal across all systems and contexts designed 
to measure a particular progression. The evidence suggests that people’s understanding of systems can 
vary substantially from one system to another; that individuals’ increasing understanding need not 
follow well-defined levels; and different situations can evoke thinking at different levels described thusly 
even within the same person (Sikorski & Hammer, 2010). Thus, at best, learning progressions provide us 
with a theoretical basis upon which we can selectively vertically scale or link scores. We can build tests 
based on these models and then attempt to link scores and measure growth only across the 
theoretically and developmentally connected scores. At worst, the result will be a set of tasks yielding 
scores that may not be vertically linkable, but support more cognitively grounded decisions and 
interpretations about students’ science reasoning and ability. 

While it is the case that some learning progressions might be consistent with unidimensional 
scales, others are built around qualitatively different ways of thinking; that is, construct shift is their 
essence. Robust learning progressions that articulate distinct ways of thinking will provide a great deal 
of insight as to how appropriate psychometric models could be built to show change over time. Growth 
would conceivably be reconceptualized to reflect developments in cognitive theory. Rather than gain 
scores computed as differences in location on a vertically linked scale from one year to the next, growth 
would be defined in terms of the number of levels on a learning progression in any particular domain on 



 

24 

which a student has progressed. Models like Wilson’s Saltus (1989) that describe development in a 
stage-like manner might be appropriate for many of these progressions. Still, without a firm grounding 
on models like learning progressions and items written to measure them, any psychometric procedure is 
useless. Thus, it is not to say that growth cannot be measured across a complex set of constructs, but it 
will take time and some trial and error to get it right. Building on past experience with familiar 
assessments and more recent research gives us a general sense of how to approach the challenge. But 
how to do so in a particular implementation will take more cycles of piloting and development. If we do 
not accept this more iterative development path, we risk falling back to what we already know how to 
do, and limit what can be implemented.  

To summarize the psychometric challenges, the basic message is that we know quite well how 
to model data from our traditional standards-based assessments, because our models were designed for 
those tasks and data and, conversely, we continue to develop tests based on what we know works for 
those models. We build tests comprised of similar kinds of tasks and focused mainly on basic concepts 
and declarative kinds of knowledge. Unidimensional modeling is well understood, and even when 
assessments are composed of traditional MC items in various multidimensional content domains, they 
can be handled within the constraints of a unidimensional model through content constraints. However, 
when the tests are comprised of items that are more complex, such as those that will be produced 
under NGSS, that simple solution is not available to us. As tasks become more highly dependent on what 
students study, and they press harder on what students are doing with them in terms of inquiry and 
model-based reasoning, and they look for relationships with more abstract overarching ideas, the more 
the multidimensionality becomes an issue. If you have a test with a variety of tasks assessing 
wonderfully deep and remarkably broad aspects of science with cutting-edge interactive technology, 
and drop-it-in on an undifferentiated population, then you get a test for which a unidimensional score 
has much lower generalizability than old-fashioned tests. For the summative accountability use case in 
which reliability and generalizability are of most importance, policy makers and educators need to 
understand what the limits of our current psychometric capabilities are. Simultaneously, 
psychometricians would be well advised to broaden their perspectives to embrace alternative 
approaches to statistical modeling and scoring that may not be as familiar or comfortable to us, but are 
more likely to provide key stakeholders with the type of information that they so desperately need to 
improve science education. 

Logistical and Practical Challenges of NGSS 

The majority of the logistical challenges for NGSS, above and beyond those for any large-scale 
testing program, are consequences of the task design recommendations. As we previously argued, 
traditional paper-and-pencil multiple-choice tests are the dominant practice because they are feasible 
and meet the constraints of large-scale assessment contexts. Once we move away from the traditional 
discrete, paper-and-pencil MC items to technology-based, complex, scenario-based tasks requiring from 
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30 to 45 minutes each, there are significant implications for access, administration times, security, and 
cost. 

The NGSS framework requires that assessments be administered to all children, in all grades, in 
all schools. Thus, the cost and logistical requirements of NGSS assessments must be manageable for all 
districts and schools, regardless of access to technology or budgetary constraints. Clearly, we know that 
some schools and districts have limited resources and, thus, limited access to technology. With the 
impending Common Core Consortia assessments set to be released in 2014, all of which require 
computer-based administration, the question of whether all schools in the United States are equipped 
with the necessary technology will soon be answered. Regardless of the answer at that particular 
moment, if recommended NGSS assessments are to be delivered to all students, in all grades, in all 
schools, there will likely be significant cost associated with bringing the technology to large numbers of 
schools that do not have the necessary equipment, or whose systems are so out of date that they could 
not support the innovative technologies we expect to leverage. Memory requirements, processing 
speeds, graphics cards—all of these must be equally available to every student, classroom, and school, if 
we are to build appropriate tasks to support NGSS assessment claims. As researchers and policy makers 
develop idealized plans of what NGSS assessments could look like, with the use of games-based and 
simulation-based tests, we must consider whether it is  possible for such a system to be universally 
inclusive. 

Focusing more explicitly on the issue of NGSS for all children, issues associated with access for 
students with disabilities (SWD) may raise challenges. There are two opposing theories about how 
technology-enhanced complex assessment tasks might impact students with disabilities—it could 
actually make the assessments more accessible, or it could create new barriers for subgroups of 
students. The argument for the use of technology-enhanced assessment to increase access for SWD 
emphasizes the flexibility of the systems and availability of assistive tools (e.g., haptics, refreshable 
Braille) that are not available with traditional paper-and-pencil tests (Haertel et al., 2012; Laitusis, 
Buzick, Stone, Hansen, & Hakkinen, 2012; Scalise, 2012). The opposing view posits that some students 
with SWD will be further challenged by the use of technology, which will only serve to interfere with 
their ability to demonstrate the targeted KSAs. The likely truth is that the SWD population is so diverse 
that no one technology will be useful for everyone. The strongest technology is, therefore, the one that 
can be the most flexible, providing only the accommodations that a given student needs in order to 
make the task and the response processes more accessible. Ultimately, whether the technology-
enhanced tasks in NGSS assessments are a barrier or a source of greater access will depend on the 
nature of the specific technologies and what affordances they might offer. Test developers and policy 
makers are advised to undertake the development effort with the explicit intention of testing these 
assumptions about the technology for SWD and leverage the technological strengths wherever possible. 

Beyond the cost of installing appropriate technology in every school for every student, costs 
associated with complex task development and scoring as recommended here could cause test 
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development costs to grow significantly. Even with our predominant use of MC items, item development 
costs are quite high. Large pools of items are needed to ensure item and test security, particularly if 
adaptive testing systems are used. If similarly large pools of items were required for the types of 
technology-enhanced tasks we are recommending, the costs could be simply unmanageable. The 
security issue has been of little concern in the learning context, which is where many of the innovative 
technologies one might consider using for NGSS assessment were developed (e.g., simulations, games). 
Item pools for complex performance assessments might arguably need to be even larger than with MC 
items. Given the rich context and highly engaging activities that would ideally be designed, the tasks are 
more likely to be memorable to test takers, thus, decreasing the likelihood that any task could be reused 
or administered at separate testing times within or across years, or even on parallel forms. Finally, even 
if the funds were available to support the development of large numbers of tasks for multiple forms or 
adaptive testing, it is not clear that innovative item types will lend themselves well to building large item 
pools.  

Whereas the population of selected response items measuring a single content area may be 
quite large, the number of complex performance tasks that adequately capture all three of the NGSS 
targets in realistic contexts may be quite limited. The challenge here will be to see whether we can build 
efficient item/task generation methods that allow us to use or reuse pieces of the technology across 
various assessments, forms, and/or tasks. Research on automatic item generation has shown limited 
success, and even that has focused on multiple-choice items. The use of task models to generate 
multiple items based on a common set of design features, all of which can be used to support a common 
set of assessment claims, has been used in some complex assessment contexts (Bejar & Braun, 1999; 
Frezzo, Behrens, Mislevy, West, & DiCerbo, 2009; Mislevy, Hamel, et al., 2003). These approaches are 
likely to offer the most promise for scaling in operational use of complex assessment tasks in NGSS.  

The final practical challenge, which may be more substantive and psychometric than practical, is 
the issue of limited testing time. We have just argued that to support the varied use cases for improved 
NGSS learning, the assessment tasks must be rich, engaging, extended tasks that provide sufficient 
context for a problem so as to elicit all three of the KSA types intended (i.e., core ideas, practices, and 
crosscutting skills). Efforts to build rich, scenario-based assessments in other domains have yielded tasks 
of 15 to 45 minutes, depending on the nature of the targeted standards. As the number of standards to 
be tested increases, the need for construct and content coverage drives longer and longer testing times. 
The issue is essentially a depth versus breadth trade-off. If we use extended tasks that give us the rich, 
cognitively based data we need to support score interpretations and use, we may need to test students 
for days before we could cover the breadth of standards required for measurement.  

This complexity is simplified in certain use cases. In the formative case, teachers are specifically 
interested in instructionally relevant information about a small number of skills to tailor current 
instruction. Another use case, the survey assessment use case exemplified by the NAEP program, avoids 
this challenge through matrix sampling. Even though the NAEP scores must reflect a wide range of 
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standards, by using complex sampling methods, each student need only provide data on a subset of the 
total framework. This would allow students to spend the needed time on a complex task that delves 
deeply into a standard and then aggregate across the students to get adequate breadth on the construct 
as well. It is unclear how, for the accountability use case in which individual student scores are needed 
that represent the entire set of standards, complex assessment could be designed with manageable 
testing time. Again, the solution to one design challenge introduces complexities in another. 

Recommended Strategies for NGSS Assessment 

Throughout our discussion of the various challenges for NGSS, we have interspersed some 
recommendations for how to tackle individual challenges. However, the complex assessment design is 
most daunting when considering the various challenges and potential solutions as a set. As implied 
throughout our discussion of the individual challenges, solutions to one design priority may come at a 
cost to others. Further, differences in the specific testing context, purpose, use, and stakeholders will 
influence the relative importance of each priority, making no single solution appropriate for all 
assessment designs. In complex educational assessment, there must be design trade-offs with 
consideration of the specifics of the assessment use case.  

Strategy #1: Build a Coherent Assessment System 

Of course, the simplest design solution would be to create a common measure to serve all use 
cases equally well; build a single test that provides summative, formative, and evaluative information. 
This is appealing both from a cost and time efficiency perspective—reduced cost to the states, reduced 
testing time, increased instructional time. The intuitive view of assessment design, that one simply 
designs a test, and a test is a test is a test (Braun & Mislevy, 2005) is only tenable under certain 
conditions. One can get away with such an approach when we have knowledge of the assessment 
context (e.g., prior learning activities, prior knowledge) and take it into account tacitly in the design, or 
when the target inference is simple, or the resources are voluminous, or the consequences of errors are 
negligible. Absent these simplifying assumptions, a more complex solution will require multiple 
assessments designed to meet specific priorities and goals of a given use case.  

Most researchers and assessment developers, including the NGSS framework authors, 
acknowledge the incompatibilities of test design for each of these uses and have, thus, argued for the 
need for a complex system of assessment tools, each designed specifically for a particular purpose, but 
complementary in how they might be used (Bennett, 2010; Bennett & Gitomer, 2009; Herman, 2010; 
NRC, 2006; Wilson, 2004). The NGSS framework authors call such a view “demonstrably inadequate,” 
stating explicitly that “no single assessment, regardless of how well it might be designed, can possibly 
meet the range of information needs that operate from the classroom level on up” (NRC, 2012, p. 262). 
Herman notes that the inherent incompatibility of the varied educational assessment use case goals and 
requirements severely compromises the extent to which a single test can simultaneously serve each of 
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the individual purposes. The optimal assessment design is not a particular universal test, but rather a 
coherent assessment system consisting of multiple types of measures, which creates a more 
comprehensive picture of student learning and serves the needs of the test users across the various use 
cases (Herman, 2010).  

To achieve successful NGSS assessment system design requires “creative design and 
comprehensive engineering, moving beyond the current state of the art.” Herman (2010) 
offered a succinct description of the overarching approach we advocate for successful NGSS 
assessment: 
In a single word but with many steps, I suggest the word “coherence.” I believe that by making 
our assessments more coherent in both design and use, we can create assessment systems 
which will measure the right stuff in the right ways while better serving intended purposes, 
particularly the purpose of improving teaching and learning. (p. 1) 

Wilson and Berenthal (NRC, 2006) expanded on the principle of assessment system coherence, 
stating that: 

A successful system of standards-based science assessment is coherent in a variety of ways. It is 
horizontally coherent: curriculum, instruction, and assessment are all aligned with the 
standards; target the same goals for learning; and work together to support students’ 
developing science literacy. It is vertically coherent: all levels of the education system—
classroom, school, school district, and state—are based on a shared vision of the goals for 
science education, of the purposes and uses of assessment, and of what constitutes competent 
performance. The system is also developmentally coherent: it takes into account how students’ 
science understanding develops over time and the scientific content knowledge, abilities, and 
understanding that are needed for learning to progress at each stage of the process. (p. 24) 

We embrace the recommendations of the Board on Science Education (BSE; NRC, 2007) and the 
BOTA reports (NRC, 2006), which suggest that a coherent assessment system, embedded within the 
larger educational system, is needed. This would serve to separate the intended assessment uses and 
desired interpretations, to the extent possible, for which different tests would be designed to support 
different claims. Separation of assessment tools and uses is needed to distinguish them with respect to 
uses cases—who needs to know what, for what purpose, with what other information, at what cost and 
time scale?  

Each use case will likely require a different form of assessment, including different sets of tasks 
and different statistical modeling approaches. The system would include tools to support group-level 
inferences, others the individual-level claims. Some tools would support feedback loops about 
instructional decisions, about school performance, maybe even about learning trajectories of 
individuals. To achieve the goals for one use case, traditional MC tests might continue to serve a critical 
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purpose. The complex, technology-enhanced tasks may be better suited for others. What is most likely is 
that some combination of different task types are needed to support the assessment claims of any use 
case. And by combination of tasks, we do not mean simply task formats, but configurations of tasks with 
respect to relationships to students’ instructional histories, and under different sets of constraints. From 
a systems perspective, the success of the entire system will result from the coordination of the separate 
assessments, each with its own distinct purpose, but considered in relation to one another. In designing 
any one of these tests, compromises will be made that optimize certain priorities at the cost of others. 
In designing each individual measure, we advocate making design choices purposefully, strategically, 
and a priori.  

Strategy #2: Articulate Design Choices 

Design trade-offs are nontrivial decisions, where design objectives are conflicting such that no 
design solution can meet all the objectives completely (Thurston & Nogal, 2001). In these situations, an 
improvement in one characteristic of the design can only be achieved by limiting another desirable 
characteristic. The overall goal is design optimization, but how to achieve it is not typically readily 
apparent. Making a design trade-off is rarely a simple process, and the solution is typically not obvious. 
As many design problems are complex with no empirically derived algorithm to support the decision-
making process, goal prioritization and personal preference are often the basis for design decisions.  

Toward this goal, tools that make explicit the design choices and their impact on system 
outcomes are paramount. In automotive design system optimization, engineers use design structure 
matrices and axiomatic design to identify the interactions among design features, allowing them to 
reduce system complicatedness (Ziegler, 2005). These representations serve to highlight and document 
critical system information that influences design decisions, including system needs, design task 
sequencing, and design iteration. These tools are intended to reduce development risks, costs, and time 
by front-loading the design process with careful consideration of the system dependencies. Most 
importantly, they allow designers to consider consequences of design decisions in early stages of system 
development when changes can still be made. In the assessment design endeavor, we have a similar 
tool, evidence-centered design (ECD; Mislevy, 1994; Mislevy, Steinberg, & Almond, 2003). ECD provides 
a mechanism to separate many of the design decisions one makes in assessment development in order 
to evaluate their impact on the usefulness and validity of the test scores. The result is increased effort at 
the outset of the assessment design process to connect more carefully design choices to the intended 
purpose of the assessment that helps designers identify sources of weakness in the system and suggests 
ways to improve it to yield scores that are maximally valid for their intended use. 
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Strategy #3: Borrow Available Information to Simplify NGSS Assessment 

Complexities 

Setting aside the complexities overcome by developing multiple assessments, there are 
complexities inherent in developing any single NGSS test, most notably the multidimensional, hard-to-
measure constructs and all that they imply for psychometrics and task design. These challenges exist for 
all use cases, but are particularly troublesome for Use Cases 1 and 2, both of which embody DIFTS 
assessment. To achieve reduced complexity in each of the tests, developers and users should borrow 
information wherever possible. Borrow information from one test to reduce complexity in another; 
borrow information of different types of data within any given test; and borrow information from 
outside of the system, including information about students, teachers, and classrooms. To the extent 
that the borrowed information can negate alternative hypotheses for observed data that compromise 
our validity argument, we have simplified the assessment design requirements without losing any of the 
richness of the assessment score interpretations and uses.  

Among the possible use cases, formative assessment (Use Case 4) likely offers the most 
abundant information that could be considered in conjunction with assessment data. Formative 
assessment is most useful when it is contextualized with respect to instructional and learning history, as 
well as indications of where a teacher should take the student next (Heritage, 2008). One of the richest, 
but often underutilized, sources of data is knowledge from teachers about students’ classroom 
experiences. If we know from information about prior classroom instruction that students have been 
taught the specific content within the disciplinary core ideas in the same context as a given test item, 
then it is more likely that a students’ ability or inability to answer a question correctly is a function of 
other dimensions (e.g., practices or crosscutting concepts). Consider the issue of complex dimensionality 
of NGSS specifically for the formative assessment use case. As suggested in our earlier discussion of 
dimensionality as a function of person and task interaction, to the extent that we have additional 
information about the students and their learning and classroom experiences, we can use that 
information to reduce the number of functional dimensions. When auxiliary information is available 
about prior learning and instructional activities, as in the formative use case, we can leverage that 
information to reduce the dimensional space. Therefore, if a teacher wants to assess a student’s 
modeling practices, that teacher should give a task that requires modeling within a core idea that we 
know the student has mastered, using specific content knowledge areas familiar to the student, and 
using technology with which the student is experienced.  

What about the accountability use case (Use Case 1)? Without this collateral information, only 
data from the assessment itself can be used to support or refute the targeted score interpretation. In 
the case when we have little external information about students or the classroom context, we must 
find strategies to borrow information from within the test itself. One strategy is to lengthen testing time 
enough that we can gather sufficient data for each test taker on each of the targeted constructs. That is, 
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borrow more of the same type of information from the same place. Given the complexity of the NGSS 
standards and the lengthy tasks that are recommended here, this approach would likely place unrealistic 
strain on the practical design challenges of the system, specifically testing time and testing cost. An 
alternative is to reduce the number of unknowns in the system by treating some of the parameters as 
known while estimating others. Bayesian methods use prior estimates for parameters to help with 
estimation issues. If knowledge about subsets of dimensions or subsets of examinees could be gleaned 
from other sources—other tests, teacher ratings, knowledge of the current and prior learning—then the 
dimensionality and number of estimated parameters could be reduced. One aspect of the NGSS 
framework that may offer some relief in this regard is the requirement that teachers across schools, 
districts, and states move through the curriculum and the standards at the same pace. Though there 
would be no way within a DIFTS assessment context to know whether this was the case or not, it might 
be reasonable to make certain assumptions about the specific learning that has or has not taken place. 
Further, given the developmental nature of the NGSS, where later, more complex standards are 
predicated on earlier standards (e.g., prerequisite skills), some assumptions could be made about 
student processing, thus, allowing for certain parameters to be fixed and treated as known. The result 
would be assessments that reflect the desired multidimensionality of the NGSS in their design, but pose 
a more unidimensional (or at least lower dimensional) problem for statistical estimation.  

An alternative strategy for borrowing information for the accountability use case is to borrow 
information from different data sources within the same test. We have stated that our traditional MC 
item types have desirable psychometric properties in that they work well with our traditional models, 
but are limited in their instructional and diagnostic utility; conversely, complex assessment tasks offer a 
great deal of rich cognitive information, but may not be so easily modeled. The strategy is to borrow 
strength from each—the psychometric stability of our traditional data and the cognitive richness of the 
new data sources. Scalise (in press, 2013) developed a hybrid MIRT-Bayes model that accomplishes 
exactly this goal. In modeling assessment data from a complex science learning environment, she 
collected both traditional assessment response data and log-file data that captured students’ 
interactions with technology-delivered tasks. Using the hybrid model, the measurement precision and 
construct relevance of the scores were both enhanced by simultaneously modeling how students 
reasoned about the science content, approached the problem-solving process, and generated solutions 
to the task. Innovative psychometric models, like the hybrid MIRT-Bayes model, when applied to 
appropriately designed tasks that elicit construct-relevant evidence of the NGSS, are likely to offer the 
most promising solutions for our large-scale accountability assessment challenges.  

Conclusion 

With the goal of improving the quality of science education, the NGSS release has fundamentally 
changed the nature of our science assessment goals. All of the challenges that we have discussed in this 
paper are consequences of that initial increased complexity about what we want our NGSS assessments 
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to be able to do. As compared to our traditional sciences assessments, we want our NGSS assessment 
scores to support interpretations about multiple hard-to-measure constructs and do so in a way that can 
both support high-stakes decisions and be diagnostic and instructionally relevant. Given that much of 
our discussion has focused on the challenges of the NGSS for assessment, the reader may interpret our 
view of the added complexity as negative. To be clear, we believe that the effort required to overcome 
the challenges is well worth the cost. Science instruction and assessment must be reflect the 
complexities in modern views of science, specifically the need to focus simultaneously on the blending 
of practices, ideas, and concepts, or we will fail our students in preparing them to be effective scientific 
contributors to the global workforce. It will take some work to lay out desired use cases and to derive 
component assessments with task designs, scoring methods, and psychometric models that satisfy the 
new requirements appropriately for each assessment purpose. Trying to build a system without doing 
this work makes failure more likely and wasted resources certain. 

What we hope to have shown through our discussion is that the NGSS assessment system, as 
any complex design system, will require trade-offs. We should simplify the complexities to the extent 
that we can, either by borrowing information from other sources to reduce system demands, by 
explicitly making compromises in our demands on the system, or by researching alternative methods 
that achieve the results of the complex techniques but through simpler means. These are all strategies 
that have served other complex system design endeavors well, but the relative youth of our science as 
compared to other disciplines limits what can be done. As policy makers and educators push for 
complex standards, like the NGSS, they must be aware of the current state of the art in assessment, 
which may not be able to accomplish all that they would like to believe. Continued research on complex 
assessment design, including research on learning progressions and other cognitive models, innovations 
in technology-enhanced complex task design, and multidimensional psychometric modeling offer the 
most promising directions to support optimal NGSS assessment system. As advances in these areas are 
made, however, it would behoove all stakeholders in the education context—teachers, students, 
parents, policy makers, assessment developers, administrators—to communicate with one another 
about each of our needs, the desired goals of the system, and the reality of our current capabilities. For 
without communication, there can be no coherence in our assessment systems as they serve to improve 
educational outcomes and attainment for all students. 

Author Note 

Any opinions expressed in this paper are those of the author(s) and not necessarily of 
Educational Testing Service. 
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