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Executive Summary 
This report characterizes the advances, opportunities, and challenges for psychometrics of 

simulation-based assessments through a lens that views assessment as evidentiary reasoning. 
Simulation-based tasks offer the prospect for student experiences that differ from traditional 
assessment. Such tasks may be used to support evidentiary arguments commonly used in assessment. 
Importantly, they also support evidentiary arguments that differ considerable from those typical in 
assessment. These novel assessment arguments are richer or more nuanced than those commonly used 
in terms of the targeted inferences about students, the evidence that facilitates those inferences, and 
the tasks that allow for the collection of such evidence. In the adopted framework that views 
assessment as an evidentiary argument, a psychometric or measurement model serves as the machinery 
to facilitate inference from observing student actions to beliefs about their proficiencies, skills, 
knowledge, misconceptions, strategies, and so on. We review recent advances in statistical modeling 
that offer a variety of psychometric models to these effects. It is argued that innovative measurement 
modeling frameworks, though not as well developed as those that dominate current operational 
assessment, are well poised to handle the complexities of the rich assessment arguments supported by 
innovative simulation-based assessment. Related aspects, strategies, and pitfalls in other parts of the 
assessment development process that must cohere with the psychometric model are discussed, 
including those surrounding assessment design, data analysis, and assessment and model revision. It is 
further argued that many of the key challenges facing psychometrics of simulation-based assessment 
are best resolved by a principled approach to assessment design in concert with data analysis. Strategies 
for solutions to some of the more imminent challenges to psychometrics for simulations are discussed, 
and potential short- and long-term future developments are suggested. 
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Introduction 
Advances in computing allow for new opportunities for assessment, with influences on activities 

and tasks, delivery systems, data collection, and data analysis. Digital representations and computer-
based delivery capacities have opened up possibilities for simulation-based assessments that were 
previously impractical in large-scale settings. Accordingly, simulation-based assessments and related 
environments, such as game-based assessments and intelligent tutoring systems, that employ 
simulation-based assessments are receiving an increasing amount of attention. However, in some cases, 
the rush to adopt the physical machinery has outstripped the adoption of the assessment machinery 
required to sensibly use the physical technology for assessment ends, often producing disastrous (and 
expensive) results.  

This report focuses on one aspect of assessment machinery necessary to best support the use of 
simulation-based assessments. Specifically, we characterize the advances, opportunities, and challenges 
for psychometrics of simulation-based assessments. We do so first by couching psychometric modeling 
and analysis in the broader context of assessment inference and argumentation offered by evidence-
centered design (ECD; Mislevy, Steinberg, & Almond, 2003), whereby a psychometric or measurement 
model serves as the machinery to facilitate inference from observing student actions to beliefs about 
their proficiencies, skills, knowledge, misconceptions, strategies, and so on. Two following sections then 
clarify the scope of what will be considered as psychometrics and review psychometrics in traditional 
assessment. We introduce some representative examples of simulation-based assessments and then 
turn to a deeper discussion of the core ingredients of psychometric modeling and the advances, 
opportunities, and challenges afforded by simulation-based environments. Included in this discussion 
will be implications for related aspects of assessment development and use. We then list some 
additional challenges to psychometric modeling for simulation-based assessments and offer a 
prospective look at the potential future use of psychometrics for simulations. A brief summary 
highlighting the key themes concludes the paper.  

A Synopsis of Evidence-Centered Design 
In this section, we review ECD to locate aspects of psychometric and measurement modeling in 

the larger assessment process and explicate its connections with the other components. 
ECD is a framework that lays out the fundamental entities, their connections, and actions that 

take place in assessment (Mislevy et al., 2003; see Behrens, Mislevy, DiCerbo, & Levy, 2011 and Mislevy, 
2012 for presentations with a focus on simulation-based and related environments). It provides 
terminology and sets of representations (Mislevy et al., 2010) for use in designing, deploying, and 
reasoning from assessments. It is descriptive in the sense that all forms of assessment (e.g., simulation-
based performance tasks, multiple choice tests, teacher–student conversations) may be framed in terms 
of ECD, regardless of their varying surface features. ECD is also prescriptive in the sense that it provides a 
set of guiding principles for the design of assessment, the aim of which is to articulate how the 
assessment can be used to make warranted inferences, that is, how assessment is an instance of 
evidentiary reasoning. Importantly, it is not prescriptive in the sense of dictating what particular forms, 
models, and representations to use. ECD (a) helps us understand the argumentation behind the use of 
measurement models like those found in item response theory (IRT; Hambleton & Swaminathan, 1985); 
(b) helps us through the assessment development process, which might lead to the use of such IRT 
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models; but (c) does not require the use of such models. This is crucial, as the focus of the majority of 
this report is on newly emerging psychometric models, and the larger point is that ECD is a common 
foundation on which we can build psychometric models and other features of simulation-based 
assessments. 

A quotation from Messick (1994) is useful in understanding the idea of an assessment argument 
and the perspective of ECD:  

We would begin by asking what complex of knowledge, skills, or other attributes should be 
assessed, presumably because they are tied to explicit or implicit objectives of instruction or are 
otherwise valued by society. Next, what behaviors or performances should reveal those 
constructs, and what tasks or situations should elicit those behaviors? Thus, the nature of the 
construct guides the selection or construction of relevant tasks as well as the rational 
development of construct-based scoring criteria and rubrics. (p. 16) 

In the following, we briefly review the layers of ECD, depicted in Figure 1, before turning to the 
central focus of this report.  

Domain Analysis and Domain Modeling 
In domain analysis, we define the content of the domain(s) to be assessed, namely, the subject 

matter, the way people use it, the situations they use it in, and the way they represent it. Resources 
here include subject matter expertise, task analyses, and surveys of artifacts (e.g., textbooks). In domain 
modeling, the information culled in domain analysis is organized in terms of relationships between 
entities, including observable behaviors we might see people do that constitute evidence of proficiency 
and in what situations those actions could occur or be evoked. It is during this stage that we essentially 
lay out the assessment argument that will be instantiated when tasks are built, the assessment is 
delivered, student performances are scored, and inferences are made. This often involves articulating 
what claims we would like to be able to make, Toulmin diagrams for assessment arguments, and design 
patterns for tasks.  

Conceptual Assessment Framework 
In the conceptual assessment framework (CAF), we take the results from domain modeling and, 

in light of the purposes and constraints, we devise the blueprint for the assessment. Our focus will be on 
the three central models that address the questions articulated by Messick (1994), as quoted earlier. 
What are we measuring, and what are the desired inferences? What behaviors might we observe that 
would constitute evidence in support of measuring those constructs or making those inferences? What 
situations should students be in to yield those observations? We address these questions via a few key 
models that become the blueprint for jointly developing the tasks and psychometric models. Three of 
the central models in the CAF are depicted in Figure 2. We will treat each in turn here briefly; the 
discussion of the psychometrics for simulation-based assessments will trade heavily on viewing what 
goes on in each of these models. 
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Figure 1. Layers of ECD. 

 
 
 
 

 

Figure 2. Three central models of the conceptual assessment framework. 
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Student model. The student model addresses the first of Messick’s questions and is where we 
articulate what we are measuring and what the desired inferences are. The student model lays out the 
relevant configuration of the aspects of proficiency to be assessed and therefore represents choices 
regarding what aspects of the domain identified in the domain analysis and domain modeling will be 
included in the assessment. We build the student model by specifying what have variously been termed 
student model variables (SMVs), proficiency model variables, or competency model variables. As 
discussed subsequently, modern psychometric models are characterized by their use of latent variables 
as SMVs, which reflects that ultimately, what is of inferential interest about students cannot be 
measured directly; that is, in assessment, we seek to reason from what students say, do, or produce in 
certain environments to their proficiency more broadly viewed.  

Task models. Task models answer the last of Messick’s questions by specifying the situations in 
which relevant evidence can be collected to inform the values of the variables in the student model and 
thereby yield inferences about students. Task models specify two main aspects: What are the features 
of the tasks, activities, or situations presented to the student? And what are the work products—the 
things students say, create, or do in these situations—that will be collected? 

Evidence models. As depicted in Figure 2, an evidence model connects the work products 
collected as specified in the task model to the variables in the student model. This is achieved via the 
two ingredients of evidence identification rules and the psychometric or measurement model. Evidence 
identification rules declare how the work products will be evaluated. The results of applying evidence 
identification rules to work products are values for observable variables (OVs). A psychometric or 
measurement model then specifies the relationships between the OVs and the SMVs. Modern 
psychometric modeling is characterized as specifying these relationships by modeling the OVs as 
stochastically dependent on latent SMVs (Almond, Williamson, Mislevy, & Yan, in press; Bollen, 1989; 
Hambleton & Swaminathan, 1985; McDonald, 1999; Rupp, Templin, & Henson, 2010), examples of 
which are discussed in subsequent sections. This represents a departure from classical test theory (CTT) 
approaches that do not formally include latent variables (Lord & Novick, 1968), though it is noteworthy 
that CTT may be advantageously reconceived in latent variable modeling frameworks (Bollen, 1989; 
McDonald, 1999). In the current work, we focus on latent variable measurement models.  

Assessment Implementation and Assessment Delivery 
In assessment implementation, we manufacture the assessment, including authoring the tasks; 

building automated extraction; parsing and scoring processes to move from work products to OVs; and 
forming the statistical models. Assessment delivery can be described as a four-process architecture 
(Almond, Steinberg, & Mislevy, 2002), cycling through the steps of (a) task or activity selection (i.e., what 
should the student work on next?); (b) task or activity presentation (i.e., delivery of the chosen task); (c) 
evidence identification through the application of evidence identification rules, in which the student 
work products are evaluated to produce values for OVs; and (d) evidence accumulation, which occurs 
when values for the OVs are entered into the measurement model to produce estimates or updated 
values for the SMVs. 

The Scope of Psychometrics 
The term psychometrics has frequently been used to refer to the measurement model 

component of the evidence model. From this view, other aspects of assessment (task creation, evidence 
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identification rules, etc.) are thought to lie outside the bounds of psychometrics and fall under the 
purview of content experts and other members of the assessment team. Slightly broader conceptions 
may include evidence identification as part of psychometrics, a slightly broader view might involve more 
aspects of the CAF, and a still broader view might include aspects of the four-process framework of 
assessment activity (e.g., task selection in adaptive testing is sometimes thought of as within the 
purview of psychometrics) or other layers of ECD. Though there are considerable benefits to taking a 
broad view of psychometrics (Mislevy, Behrens, DiCerbo, & Levy, in press), in the balance of this report, 
the characterization of psychometrics will focus heavily on evidence models and the measurement 
model in particular. Importantly, the connections between the measurement models and the rest of 
assessment development are crucial, and therefore the discussion of psychometrics necessarily includes 
other aspects of assessment. The importance of considering measurement models jointly with other 
aspects of assessment will be a recurring theme. 

The motivation of this focus is grounded in a view of the measurement model as the distillation 
of the assessment argument into formalizations that are the machinery of inference (Mislevy, 1994). In 
particular, the measurement model is the junction point where the student’s behaviors (captured by 
OVs defined by evidence identification rules) are used to update our beliefs about the student’s 
proficiency (captured by the SMVs). To explicate, we take the simple situation where an OV X can take 
on values 1 and 0 (e.g., as the result of applying a correct–incorrect evidence identification rule) and a 
SMV θ can take values of high or low (corresponding to a simple conception of proficiency). The rows in 
the Table 1 give an example measurement model, with a conditional probability distribution for values 
of X given the value of θ.  

 
Table 1. Conditional Probability Table for an Observable Variable X Given a Student Model Variable θ 

Student model variable θ Observable variable X 
 1 0 

High .9 .1 
Low .2 .8 

 
By constructing the model such that X is stochastically dependent on θ, we specify the model as 

one with a “flow” from θ to X. This is also reflected in the graphical representation depicted in Figure 3.  
 

θ

X
 

Figure 3. Graphical representation of a measurement model with one 
observable variable X and one student model variable θ. 
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In assessment-based inference, we seek to argue in the reverse direction of this flow, from an 
observed value for X back to θ. That is, we seek to draw inferences from observations of student 
behavior to their latent proficiency.  

The use of probabilities in the measurement model reflects our uncertainty regarding the 
connection between performance and proficiency, as is almost always present in assessment (Mislevy, 
1994; Mislevy & Levy, 2007). As a consequence, we have uncertainty in our inferential argument. We 
cannot be sure that a student who correctly answered a question has a high level of proficiency (e.g., he 
or she may be of low proficiency but guessed correctly), and we cannot be sure that a student who 
incorrectly answered the question has a low level of proficiency (e.g., he or she may be of high 
proficiency but slipped up). Our inference is then characterized by (a) setting up the flow from 
proficiency to performance—from SMV(s) to OV(s)—and then (b) reversing this direction once values for 
OVs are known. Returning to the example in Table 1, this is accomplished statistically as follows. For any 
observed value (1 or 0) for X, we utilize the corresponding column as a likelihood function for updating 
beliefs about the student proficiency represented by θ. For example, if we observe X = 1 (i.e., the 
student correctly answered the question), our beliefs regarding θ are updated by using the likelihood of 
9:2 in favor of the student being at a high level of θ.  

As advocated by ECD, we conceive of this process—where the model is built with a flow in a 
certain direction, inference proceeding by reasoning the reverse direction “back through” the model, all 
the while using probabilities as expressions of the strength of relationships and our uncertainty—as one 
of Bayesian inference. However, the argument structure still applies for variants of these themes, such 
as the use of frequentist perspectives on statistical inference or deterministic relationships.  

Psychometrics of Traditional Assessment 
Before turning to simulation-based assessment, it is worth describing traditional assessments in 

terms of their psychometric underpinnings as they play out in the evidence models and related aspects 
of the CAF. By traditional assessment, we do not mean (just) the physical objects with which students 
interact but also what Mislevy et al. (in press) characterized as the standard assessment paradigm. This 
may be briefly summarized as having the following elements: a student receives many short, predefined 
tasks (usually questions), his or her behaviors on each task (usually responses to questions) are scored 
independently, and those scores are aggregated to yield a summary score interpreted as a summary of 
the student’s proficiency in the domain. Though many exceptions to this paradigm exist, this represents 
the dominant approach to educational assessment, particularly in large-scale and high-stakes 
applications.  

In what follows, we adopt unidimensional IRT as an archetypical measurement model for 
traditional assessments, which will later serve as a foil to novel alternatives that are potentially better 
suited for simulation-based assessments. However, any such comparison of the relative merits and 
demerits of these measurement models depends on the inferential frame represented by the remaining 
elements of the student, evidence, and task models. Put another way, the popularity of familiar 
measurement models in operational assessments, particularly in large-scale assessments, reflects the 
purposes, choices made, and practical constraints in such assessments (DiCerbo & Behrens, 2012). 

Student models in such assessments have tended to be unidimensional, where evidence 
accumulates to characterize students in terms of one broadly conceived construct, dimension, or 
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representation of proficiency, denoted here by θ. Conceptually, θ represents a single dominant 
dimension that drives performance on the tasks. Its interpretation rests on the scope of the tasks, which 
have tended to be short, discrete questions or activities. Domain modeling typically identifies a number 
of aspects of proficiency; design patterns and task patterns may then be used to build tasks that target 
these different aspects. The interpretation of θ is then derived from assessment assembly rules that 
guarantee inclusion of many tasks that broadly survey the domain and target the varied aspects of 
proficiency. This is accomplished by adhering to content specifications in fixed forms or content 
requirements/constraints in adaptive testing scenarios.  

Work products take the form of paper-and-pencil submissions or recorded inputs in computer-
based delivery systems. Evidence identification rules to produce OVs for such work products for short 
tasks in educational assessment has been dominated by dichotomous scoring. An archetypical example 
is the Scantron sheet work product with dichotomous scoring based on whether the selected (bubbled 
in) response to the multiple choice question is deemed correct. Partial credit scoring, often associated 
with rated or constructed response tasks, is similarly popular.  

Measurement models have included fairly straightforward aggregations of OVs to locate 
students on the single SMV of the (unidimensional) student model such as via IRT models. Figure 4 
depicts the measurement model graphically, where θi is the latent SMV for student i and the rectangles 
for Xi1, Xi2, Xi3, . . . , XiJ are the J (dichotomous) OVs for student i, values of which are obtained by applying 
the evidence identification rules to the work products. In simple dichotomous scoring, there is one 
observable produced for each task; for each task j = 1, . . . ,J, observable Xij is 1 if the response to task j 
from student i is evaluated as correct, and is 0 otherwise. When discussing a variable without reference 
to a particular student, we will drop the subscript i. The arrows from the SMV to the OVs indicate that 
the measurement model is constructed by specifying the distribution for each OV as conditional on the 
SMV. IRT models structure this dependence in terms of parameters for items. One common 
representation of the three-parameter logistic (3PL) model (Hambleton & Swaminathan, 1985) specifies 
the conditional distribution for student i for observable j (i.e., corresponding to the scored performance 
on task j by student i) as  
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where Xij is the value for the OV (coded as 0 or 1); aj, bj, and cj, are discrimination, location, and lower-
asymptote parameters for observable (item) j; and D is a scaling coefficient usually chosen to be 1, in 
which case, it drops out of the expression, or 1.7, which yields results in a metric close to normal-ogive 
models (cf. McDonald, 1999, for other representations useful for exploiting connections to other latent 
variable models). Popular special cases include the 2PL model, in which cj = 0, and the one-parameter 
logistic model, in which, additionally, all aj are equal and, without loss of generality, can be set equal to 1 
if the variance of the θ distribution is unconstrained. 
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This approach to measurement modeling emphasizes the use of many discrete OVs, 
corresponding to scores from the administration of many short tasks. Importantly, a key assumption of 
these measurement models is that the OVs are viewed as conditionally (locally) independent given the 
latent SMV θ (Hambleton & Swaminathan, 1985; McDonald, 1999). Graphically, this is represented in 
Figure 4 by θi “blocking” the path from one OV to another (Pearl, 1988). Statistically, this conditional 
independence assumption allows for the factorization of joint distributions of OVs. This supports a 
variety of activities such as simplified model calibrations and parameter estimation, test assembly to 
reflect target information functions, and updating beliefs about θ based on individual observations in 
adaptive testing. Conceptually, this conditional independence assumption means that once the 
evidentiary impact of a value for an OV is included by updating beliefs about θ, the OV has no further 
influence on the evidentiary bearing of any other OVs.  
 

θi

Xi1 Xi2 Xi3 XiJ
…

 

Figure 4. Graphical representation of a traditional unidimensional measurement model. 

Importantly, these features of the student, task, and evidence models function as a coherent 
set. The key assumption of conditional (local) independence between responses in unidimensional IRT 
models is aligned well with the specification of a single SMV and the use of many short, discrete tasks 
that can be interchangeably swapped in and out of operational use. 

We do not claim that all educational assessments make these choices or instantiate the 
inferential argument with these choices for the student, task, and evidence models. Many familiar 
assessments (e.g., classroom teachers questioning students; physicians engaging in medical diagnosis) 
depart from these choices, to say nothing of innovative assessment such as simulation-, game-, and 
intelligent tutoring–based assessments. Nevertheless, all these assessments can be framed in terms of 
the language and layers of ECD. Thus ECD allows us to see similarities and differences among various 
kinds of assessments that differ in their surface features (e.g., how is a game like and unlike more 
traditional assessments? Behrens, Frezzo, Mislevy, Kroopnick, & Wise, 2008). 

Simulation-Based Tasks and Assessments 
A simulation-based task is one in which the student is presented with, works with, or produces a 

work product that contains a simulation of a real-world scenario. They are distinguished by the presence 
of dynamic or interactive features (e.g., viewing an animation, acting in ways that prompt a change or 
response from a system). They are often delivered and store work products via computer or similar 
digitized mechanisms, though this need not be the case (e.g., Dillon, Boulet, Hawkins, & Swanson, 2004; 
Vargas, 2012).  
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To make a number of issues concrete, we briefly describe a few environments to give a sense of 
the sorts of things meant by simulation-based tasks. Figure 5 contains a screenshot of Cisco’s Packet 
Tracer system, a dynamic visualization and computation engine for simulating computer networking 
environments. Packet Tracer is a tool provided by the Cisco Networking Academy (Cicso, n.d.), in which 
information technology is taught through combinations of face-to-face instruction, online curricula, and 
online assessments, providing training to over one million students annually in more than 170 countries. 
Our current focus is on the use of Packet Tracer as a flexible environment for designing, delivering, and 
scoring simulation-based tasks. Tasks include activities like configuring networks to meet client needs 
and troubleshooting malfunctioning networks. Students engaging with Packet Tracer tasks interact with 
authentic images and representations of the physical devices, their interiors, ports, and so on (Figure 6), 
as well as an authentic command line interface for interacting with these devices. In the topological map 
interface (Figure 5), devices are represented as icons. A variety of toolbars allow for students to select 
devices and simulate the movement of packets throughout the network, which is represented as an 
animation. Clicking on devices brings up visuals of their physical representation (Figure 6) as well as 
simulations of their interfaces. See Frezzo, Behrens, and Mislevy (2010) for a more detailed discussion of 
the use of Packet Tracer for assessment and Cisco (2010) for a brief video demonstration.  

 

 

Figure 5. Screenshot of Packet Tracer, showing the logical topology and toolbars. 
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Figure 6. Screenshot of Packet Tracer, showing the representation of router configuration. 

 
A second set of examples comes from work on simulation-based assessments for science in 

traditional schooling (Quellmalz et al., 2011). Figure 7 contains a screenshot from a simulation-based 
task targeting student understandings of organism classifications and food webs. In this task, students 
view animated sequences of organisms interacting in the ecosystem and are asked to draw food webs in 
dynamic environments. Figure 8 contains a screenshot of a related task targeting understanding of 
ecosystems, in which students dynamically interact with features of the ecological system to monitor 
population patterns to achieve desired ends such as an environment that is stable in terms of the 
populations of various organisms. Tools in this environment include slider bars to manipulate features of 
populations, a visual depiction of population density, and time series line plots of the populations of 
organisms over time. These tools are coupled with questions prompting students to make predictions, 
examine them, and indicate their conclusions and justifications. Video demonstrations of these and a 
number of other simulation-based tasks may be found online (SRI International, 2007). 
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Figure 7. Screenshot of organism and food web simulation-based assessment. 

 

 

 

Figure 8. Screenshot of ecosystem simulation-based assessment. 
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Psychometrics of Simulation-Based Assessments 
With these sorts of tasks, what in our psychometrics and measurement modeling has to change? 

Actually, nothing has to change. If our inferential goal is (still) to order students on one broadly 
construed conception of proficiency represented by one SMV, and we think of evidence from student 
performance in terms of a single OV for each task, and we deem these performances and resulting OVs 
conditionally independent given the single SMV, then very little, if anything, has to change. For example, 
if we think of troubleshooting a computer network in a Packet Tracer task in terms of a single 
proficiency (“troubleshooting computer networks”), and characterize each student performance in 
terms of one observable in two categories (e.g., the network is fixed or is not fixed), and think that the 
performance on such troubleshooting tasks is conditionally independent given the single SMV, modeling 
the OVs via a 2PL may indeed be appropriate.  

However, this is less than desirable for a few reasons. First, simulations may be a very inefficient 
way to obtain this sort of evidence. Packet Tracer tasks may be so involved that students take upward of 
a few hours to complete them (much like real-world tasks in computer networking). A couple of hours’ 
work to yield one OV seems like a wasted opportunity, and indeed, it may be unrealistic to then expect 
students to complete many such tasks for an assessment, as we do with shorter, more disconnected 
tasks in traditional assessment.  

More importantly, interpreting and modeling evidence from simulations in such a limited way 
misses out on the real evidentiary opportunities that often motivate the use of simulations. Simulations 
are appealing because they afford us the potential to measure multiple aspects of proficiency and offer 
a multitude of evidence in ways not easily accomplished in traditional assessment formats. In Packet 
Tracer, we might conceive of the relevant proficiencies in terms of working with different devices (e.g., 
routers, switches, computers) and/or in terms of various actions that occur across devices (e.g., 
configuring passwords, allowing connections). Or we might wish to characterize proficiency in terms of 
both accuracy and efficiency and look for different though related data to constitute evidence, such as 
whether a feature of the network is fixed and how long it took to fix it, respectively.  

Thus, in the balance of this report, when we refer to simulation-based tasks or assessments, we 
not only mean these kinds of tasks but the kinds of evidentiary reasoning facilitated by the use of these 
tasks. We will turn now to characterizing a number of features of these situations in terms of the 
elements of the CAF. Along the way, we will present key principles and challenges of evidentiary 
reasoning in assessment and illustrate them with examples from traditional assessment environments. 
The examples are purposefully selected as occurring outside simulation-based assessments to illustrate 
the generality of these principles and their importance to psychometrics in any context. The resolutions 
of the issues in traditional assessment are rarely made explicit and/or are often taken for granted as a 
done deal. This likely reflects the organic as opposed to systematic development of assessment practice 
over time, which occurred against a backdrop of (a) often unstated background beliefs regarding 
psychology, learning, and expertise (Mislevy, 2006); (b) certain purposes of assessment; and (c) 
technological constraints of various sorts, including not only the delivery of assessments but also 
machinery for storing, manipulating, and analyzing data from assessments (DiCerbo & Behrens, 2012). 
Importantly, the challenges posed by these principles become exacerbated in simulation-based 
assessments, and we will see that either (a) they cannot be resolved in the usual ways, or, if they can, (b) 
we often do not want to do so, lest we miss out on realizing the potential of simulation-based 
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assessment. Put another way, the opportunities for more intricate reasoning that are afforded by 
simulation environments coupled with advances of technology allow us—if not force us—to address 
these issues in ways that are markedly different from the commonly assumed backdrop prevalent in 
traditional assessments. 

Task Model 
Principle 1: What is presented to the student matters crucially for evidentiary reasoning, in 

ways we might not intend or expect. Figure 9 presents alternative versions of a question targeting 
whether the student knows the capital of Australia. Consider the differential evidentiary value of a 
correct answer (Canberra) in each of these situations. Suffice it to say that we might argue whether or 
not these items are of different difficulty, or we might debate if they even measure the same construct, 
or whether they are appropriate for, say, inferences about a student’s knowledge of geography. We 
might adopt the position that there are not really any differences other than one of relative difficulty. Or 
we might argue that not only are they of different difficulty but also they provide evidence about 
different things; in contrast to Version a, Version b tells us something about the student’s knowledge in 
the context of Australian national and territorial capitals, Version c tells us about his or her knowledge in 
terms of other world capitals, and Version d tells us nothing at all about the student’s knowledge of 
Australian national or territorial geography or any other nations’ capitals. 

 
 

(a) (b) 

What is the capital of Australia?

 

What is the capital of Australia?
A. Brisbane
B. Canberra
C. Melbourne
D. Sydney

 

(c) (d) 

What is the capital of Australia?
A. Berlin
B. Canberra
C. London
D. Paris

 

What is the capital of Australia?
A. Bookshelf
B. Canberra
C. Refrigerator
D. Television

 

Figure 9. Four versions of a question about the capital of Australia. 
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Recognizing the sensitivity of the evidentiary quality to features of the task, note that the 
difference between traditional and simulation-based assessments is perhaps most stark in the tasks 
themselves—what is presented to the student, what the student interacts with, and the forms of the 
work products the student submits. Simulation-based assessments tend to have fewer tasks, perhaps 
even as few as one, that are each longer and more connected in that the actions students take are 
explicitly dependent on one another. Computer-based delivery also supports the recording of more 
complex work products. For example, work products of tasks in Packet Tracer could include the final 
configuration of the network, time-stamped log files of what was typed into the command line interface, 
and click streams of their use of the system. 

Simulation tasks might also be structured or scaffolded in ways not present in static 
assessments. A popular example of the structuring is facilitated by the unfolding nature of the task and 
the student–system interactivity. For example, how a student configures a password on a device might 
impact what else may need to be done. This is particularly salient if the assessment involves multiple 
attempts. For example, suppose a student working through the ecosystem task depicted in Figure 8 set 
the levels of the populations in such a way that one organism died out. Having the student engage with 
the task again represents a structuring based on the student’s past behavior. A similar structuring occurs 
in game-based assessments in which students repeat a game level until they complete it successfully 
(e.g., Kerr, Chung, & Iseli, 2011) and assessments in intelligent tutoring systems that provide repeated 
attempts, with or without hints as additional scaffolding (VanLehn, 2008; VanLehn & Niu, 2001).  

Student Model 
Principle 2: Assessments are almost always multidimensional. Despite the popularity of 

unidimensional measurement models, assessments are almost always multidimensional in the sense 
that students bring multiple distinct aspects of proficiency to bear when answering questions, solving 
problems, and completing tasks, especially in complex domains (cf. Reckase, 2009, on dimensionality 
from the perspective of the matrix of values of the OVs). This does not mean that the use of a single 
SMV and a unidimensional measurement model is necessarily unwarranted. But their use does imply 
certain simplifications or approximations, which may or may not be desired, depending on the purpose 
of the assessment. Unidimensional IRT models may be well suited for situations in which we desire the 
relative ordering of students in terms of a single dimension viewed as a coarse characterization of a truly 
multidimensional domain. Simple examples of managing the multidimensionality of the domain in 
support of a unidimensional student model include delimiting the relative weights afforded to different 
sets of tasks that target different aspects of proficiency, say, via tables of specifications, or content 
requirements/constraints in adaptive testing scenarios. In some circumstances, the multidimensional 
space can be ordered such that it collapses into a single dimension (Reckase, 2009). In other situations, 
especially when we wish to support inferences about multiple aspects of proficiency and such orderings 
of the multidimensional domain space are not substantively meaningful, a unidimensional model might 
not be sufficient.  

In simulation-based assessments, the student model is often multidimensional in that we seek 
to make inferences about multiple, distinct aspects of the proficiency. This occurs for two reasons. First, 
the technology of task delivery and work product storage allows us to capture different forms of 
evidence. As a simple example, computer-based delivery and monitoring of student behavior allows for 



 

17 

the capturing of the time between actions as well as the actions themselves. This is also true of 
computer-based administrations of traditional task formats. This supports a distinction in the student 
model between accuracy and efficiency; see van der Linden (2007) for an example of such a model with 
two SMVs for a traditional assessment. In addition, one appeal of simulation-based tasks is their promise 
to provide evidence about multiple aspects of proficiency. One line of argument is that, as more 
authentic representations of real-world situations, simulation-based tasks allow for inferences about 
aspects of proficiency that are difficult to measure in traditional task formats that have less fidelity to 
real-world situations. Thus they offer opportunities to collect evidence about multiple aspects of 
proficiency, usually in finer grained delineations than the single SMV of traditional assessments, 
including the integration of those aspects of proficiency in tasks mirroring the complexity of real-world 
situations (e.g., Rupp et al., 2012).  

Evidence Model: Evidence Identification Rules 
Principle 3: The more open the workspace, the more possibilities there are—and the more 

decisions need to be made. Here workspace refers to the space of possible behaviors we might see, 
operationalized as the possible work products. The assessment community knows well how to handle 
Scantron sheets and other familiar forms of work products (e.g., written essays) because there is an 
explicitly defined—if not always articulated—clear association between behaviors and values of the OVs 
produced by the application of evidence identification rules to these work products. For example, a 
Scantron sheet associated with the question in Figure 9b might have the following rule associated with it: 

Evidence identification rule: Assign the OV the value of “1,” standing for “correct,” if the bubble 
next to option B is filled in; otherwise, assign the observable the value of “0,” standing for 
“incorrect.” 

And even in situations where there is more ambiguity, such as ratings of constructed responses, systems 
have been developed to make them more manageable through defined rubrics and investigations of the 
reliability of the ratings through the use of multiple raters. 

However, with evidence identification rules, we must account for all possible behaviors in the 
workspace. Figure 10 depicts several possibilities for what could be observed in a Scantron work product 
for the multiple choice task of Figure 9b, where “B” is the correct answer. Figures 10a and 10b represent 
easily interpretable work products to which we would assign correct and incorrect, respectively. Figure 
10c is usually interpreted as a missing value (i.e., no answer submitted), and there are a number of 
common ways of interpreting this (e.g., as incorrect). The remaining panels in Figure 10 list but a few of 
the myriad possibilities we might see in the work product, for which decisions need to be made. Do we 
give credit for an incompletely filled-in bubble or the use of a different mark? What about answers 
written in on the side instead or in addition to bubbled-in answers? And what do we do when multiple 
bubbles are filled in? The point is not that there is a right or wrong way to handle these situations but 
that must have evidence identification rules for these and any other behaviors we might observe in the 
work product.  

Despite the possibility of many behaviors, Scantron sheets are actually a fairly restrictive 
workspace. They are a knowledge representation by which students communicate their responses, and 
their very form helps to convey how the communication from student to assessor is expected to take 
place (Mislevy et al., 2010). Their use represents a choice on the part of the assessor regarding what he 
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or she will pay attention to and communicates as much to the student. A bit more casually, their use 
amounts to the assessor saying to the student, “Your response to the question will be judged in terms of 
your written record in this format, where a filled-in bubble corresponds to a selection of that option as 
the answer.” Of course, clear directions and exposure of students to this format are important for them 
to be comfortable with this knowledge representation. Evaluating work products, then, comes to 
decisions about what to make of all the possible behaviors within this format (some of which are 
depicted in Figure 10).  
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Figure 10. Example Scantron work products for a multiple choice question: (a) indicating a correct 

response; (b) indicating an incorrect response; (c) missing response; (d) incompletely  
filled-in bubble; (e) use of a different mark; (f) writing in the selection; (g) filling in  

multiple bubbles; (h) filling in multiple bubbles and an extra mark;  
(i) filling in multiple bubbles and an extra mark and writing in the selection. 

 
Turning to simulations, if the simulation environment itself is new to a user, performance on 

tasks may be a function of the user’s (un)familiarity with the environment. Moreover, the features of 
the environment undoubtedly affect the student’s perceptions and interactions with the environment in 
ways we might yet not know. Reflecting on the research conducted and lessons learned in the last 100 
years in reading assessment in terms of passage construction or selection, question writing, distracter 
creation and placement, instructions for filling in Scantron sheets, and so on, begs the question of 
whether a similar level of wisdom is needed about how to best design simulations. Such design choices 
are likely to be localized to the domain or task (e.g., how should we present arrows in food webs [Figure 
5] or density and line graphs in ecological monitoring [Figure 6]?), though some generalities of design of 
simulation environments (e.g., Nelson & Erlandson, 2008) are likely to persist . Navigating the potential 
morass will be aided by advances in conceptualizations of design, such as Behrens, DiCerbo, and 
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Ferrara’s (2012) characterization of the design of tasks in terms of the problem space, tool space, 
solution space, and response space. 

The technology of simulations allows us to record and store much more than traditional 
assessment formats. A useful distinction is between the end-of-state work product (e.g., the final 
configuration of a computer network) and the process taken to arrive there (e.g., a log of all the 
commands entered to configure the computer network). Computer-based simulations allow for the 
recording of both. This runs us smack into the question of the rules for evidence identification: given 
that we can store so many features of student performance, what should we pay attention to? As 
discussed in the following subsection, the need to address this is, in the author’s opinion, the single 
greatest challenge to simulation-based assessments.  

The Openness of the Workspace and Grain Size 
The source of the greatest potential for simulation-based assessments is also the source of its 

most daunting challenge. The openness of the workspace affords us the possibility to represent the real-
world phenomenon of interest with a level of fidelity and authenticity that may not have been possible 
for economical, ethical, or other reasons. It simply is not feasible to offer every one of Cisco’s students 
an unlimited supply of PCs, routers, switches, cables, and so on, on which to work though tasks, but with 
Packet Tracer, we can get remarkably close to the real thing. Nor is it feasible (or ethical) to have every 
middle school student go out to a lake and start making changes to the ecosystem to explore what 
happens to populations of organisms. Simulations afford us the opportunity to mimic these real-world 
phenomena. However, with this authenticity comes an openness of the workspace that allows for often 
an incredibly large and possibly infinitely number of behaviors that a student can conduct. In these 
wide-open environments, how, then, are we to know what to pay attention to that constitutes 
evidence? That is, how are we to define our evidence identification rules? In the following, we put forth 
several possible solution strategies. 

First, we can limit our scope in some way. If the openness of the workspace is a problem, we can 
restrict it so that the space of possible behaviors is smaller. Another way is to “abstract up” what we pay 
attention to, from finer grained to more coarsely grained performance features. In thinking through all 
the sequences of actions that could be taken to successfully configure this computer network, we can 
abstract up to a coarser summary of performance. For example, in Packet Tracer tasks for 
troubleshooting computer networks, we might simply set up a rule analogous to that for the Scantron 
work product: 

Evidence identification rule: Assign the OV the value of “1,” standing for “correct,” if the packet 
can get from point A to point B; otherwise, assign the observable the value of “0,” standing for 
“incorrect.”  

However, these strategies of restricting the workspace or what we pay attention to seem to have as 
their casualty the very things that are attractive about simulation-based assessments—the openness of 
the workspace, the possibility for students to behave as if in the real world, and the richness of student 
performance in terms of processes and nuances not captured by coarse summaries of performance. The 
use of the preceding evidence identification rule fails to aid in (a) informing on distinctions between, or 
characterizations of, the multitude of ways to fix the malfunctioning computer network, and (b) 
diagnosing strengths and weaknesses of the unsuccessful attempts. In short, the abstraction of the 
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information in a student’s performance up to the level of correct–incorrect, as in the preceding evidence 
identification rule, is at too coarse a grain size. 

Alternatively, we may avoid the problem of having too coarse of a grain size by enumerating all 
possible behaviors in the workspace and construct interpretations for all such possibilities. This is 
somewhat a function of the type of task and somewhat a function of its instantiation and the delivery in 
the actual assessment. Scantron sheets for multiple choice items are a workspace that affords many 
different possibilities, as in Figure 10. A different medium of presentation of the task and format of the 
work product, such as computer-based delivery, may eliminate some possibilities, though, of course, it 
may open up others.  

Enumerating and forming interpretations for all possible behaviors may be feasible if the space 
of behaviors is fairly constrained or sufficiently scaffolded to rule out a number of otherwise possible 
behaviors. Of course, limiting the space of behaviors runs counter to the arguments of fidelity and 
authenticity of simulations. Accordingly, the workspace in simulation-based tasks is typically fairly more 
“open” in the sense that there are many, many behaviors in which a student can engage. In such 
contexts, we would be paralyzed if we had to specify all possible situations.  

In laying out the evidentiary argument, we need to think through possibilities and make the 
evidentiary linkages as explicit as possible for all possible behaviors that are deemed important. Defining 
evidence identification rules is then a choice of the appropriate grain size, in which we navigate between 
having too coarse a grain size (“I will pay only attention to whether a packet can get from point A to 
point B”) and too fine a grain size (“I will have an interpretation for each possible behavior I might 
observe”). The former is frustrating to those who seek to capitalize on the power of simulations; the 
latter is a prescription for possibly never completing the evidence identification rules. In practice, the 
answer lies somewhere in between. In our quest for more than just the coarsest characterizations of 
performance, choices need to be made about how to summarize or pool different behaviors into a more 
manageable subset. So the goal then becomes enumerating all possible behaviors or features of 
performance that have evidentiary bearing on the desired inferences and declaring the rest of these 
behaviors or features as irrelevant. We must declare when a difference in performance  makes a 
difference in our interpretation. And we must ignore differences where differences they make no 
difference. If in configuring a computer network whether you used a router or a switch tells me 
something about you, we need to pay attention to that difference; if it does not, it can be can be safely 
ignored. 

The assessment community has nearly a century of experience in making these choices for 
situations with fairly restrictive forms of work products (e.g., Scantron sheets), simple conceptions of 
proficiency (one SMV), and simple beliefs about the evidentiary bearing of performance on the tasks 
(corrector incorrect). For simulation-based tasks, in which the work products are in innovative formats 
and our conceptions of proficiency and the evidentiary bearing of performance are complex, the 
situation is more daunting. 

Our solutions to this issue are likely to come from two sources. First, a principled approach to 
assessment design based on subject matter expertise facilitates the joint construction of tasks and 
evidence identification rules (and measurement models, discussed in the following section). During the 
design, we structure the tasks such that we know as much as possible about the features of possible 
behaviors in the workspace, which ones have evidentiary bearing, and which ones can be ignored. 
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Through design, we can set ourselves up to store and interpret relevant aspects of student performance, 
eliminate threats to interpretation, or streamline possibilities. For an example where the design of a 
highly structured workspace facilitates the specification of what features of performance to attend to, 
see VanLehn and Niu (2001) and Conati, Gertner, and VanLehn (2002). Saying we do this so that we 
know as much as possible about relevant features of possible behaviors reflects an acknowledgment 
that it is likely that we will not know all the relevant features of performance in complex tasks and open 
workspaces a priori, especially when there may be multiple ways to successfully complete the task and 
multiple ways to unsuccessfully complete the task.  

A second source for knowing what to pay attention to comes from data analysis. Piloting the 
tasks and learning from data in various ways (cognitive labs, talk-alouds, larger deployments and 
calibrations) can offer us these insights. Analyses of data from administrating the tasks to students may 
reveal key features of performance to attend to in ways that yield new or revised evidence identification 
rules. In particular, the assessment community has much to gain from leveraging tools that have grown 
up in the educational data mining community for exploring and learning from data from simulation-
based assessments (Mislevy, et al., in press).  

In practice, the answer to the question of what to pay attention to is likely to be a mixture of all 
of these. If we required that we think of every possibility before rolling out an assessment for piloting, 
we might never complete the design of even one simulation-based task in an open workspace. The 
environment may be too complex for SMEs to anticipate all possibilities and articulate their evidentiary 
interpretations and relevance. Rather, a more constructive approach takes its cue from principles of 
modern statistical modeling and exploratory data analysis (Behrens, 1997; Behrens, DiCerbo, Yel, & 
Levy, in press; Box, 1976; Tukey, 1977) that recognize that any model is necessarily limited and interpret 
patterns of data relative to model-based expectations. This is done both to look to confirm those 
expectations and also to challenge them to find unanticipated patterns that reveal important features. 
In assessment, this unfolds as follows. We begin with principled design and construct the tasks, evidence 
identification rules, and measurement model in concert with desired inferences and what is believed 
about the domain. We then collect data from piloting, exploring patterns to support or refute the a 
priori expectations as well as to illuminate unanticipated features.  

Typically, the activities in this latter stage of data analysis have focused on data–model fit 
between the measurement model and the data. Examples include statistical item analyses, checks for 
the dimensional structure, and analyses of noninvariance or differential functioning. The full implication 
of these practices can be seen by viewing the measurement model as the distillation of the assessment 
argument. An adequate data–model fit constitutes support for the evidentiary argument. A weak data–
model fit points to weaknesses of the evidentiary argument, which may lead us to revise our 
measurement model, evidence identification rules, tasks and task models, inferential targets, or perhaps 
our understanding of the domain. 

For examples where this interplay between principled design and data analysis have yielded 
improved understandings of features of performance in simulated-based assessments, see Rupp et al. 
(2012), in the context of understanding log files from Packet Tracer tasks, and Kerr and Chung (2012) 
and Kerr et al. (2011), in the context of identifying misconceptions and strategies in a simulation-based 
educational video game targeting rational number equivalence. These examples also highlight the 
nonlinear and iterative nature of assessment development; the sequencing implied by Figure 1 
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represents an idealized process of our intentions. In practice, things are much more iterative, with 
design followed by piloting and data analysis, which then informs on aspects of the domain farther back 
up the chain of ECD, leading to revisions of task, subsequent piloting and data analysis, and so on. We 
recognize that a complete a priori specification of all possibilities and interpretations is unlikely, and 
there is always a role for data analysis. Nevertheless, it is advanced here that negligence in design is 
likely to be costly. In the scale of effort for understanding what is going on and constructing evidentiary 
arguments in simulation-based assessments, experience teaches us that an ounce of design is worth a 
pound of data analysis. 

Some other comments about the impact of a simulation workspace are warranted. There is 
usually a positive relationship between fidelity and openness and a negative relationship between 
openness and ease of interpretation. The real world is rich and complicated, and doing work in any 
domain involves lots of moving parts. The more authentic we wish to make a simulation, the more 
possible actions there will likely be, and the more will be required to specify the evidentiary argument.  

In specifying the rules for evidence identification, the choices regarding what to pay attention to 
should be made with respect to the desired assessment goal. Formative uses may call for different 
aspects of performance to be monitored than summative uses. The desire to characterize students in 
terms of a profile of strengths and weaknesses might call for different foci than the desire to order 
students on a single coarsely conceived dimension. 

The openness of the workspace is a challenge for identifying relevant aspects of end-of-state 
work products (e.g., the final configuration of a computer network). It is even more of a challenge for 
identifying relevant aspects of work products on the process (e.g., log files of all actions taken in 
configuring the computer network). Such features of performance have historically played a minor, if 
any, role in assessment, particularly at a large scale. Articulating the processes that constitute evidence 
regarding different categories, levels, or amounts of proficiency is arguably a much more daunting task 
than articulating the resulting end-of-state work products. There are often some general arguments to 
be made for end-of-state work products, such as students with higher levels of proficiency will tend to 
successfully complete tasks more often than students with lower levels of proficiency. It is much harder 
to articulate how they will complete these tasks. This is particularly so in complex situations, where 
there may be multiple distinct, possibly mutually exclusive processes that are equally valued. See 
DiCerbo, Liu, Rutstein, Choi, and Behrens (2011) and Rupp et al. (2012) for examples that focus on 
understanding such processes in Packet Tracer tasks.  

In summary, the openness of the workspace is both a blessing and a curse. Indeed, the flexibility 
and fidelity of the workspace is often what makes it attractive for assessment. However, with that 
openness of the workspace comes the challenge of satisfying the principle that we need to know what 
to pay attention to, which amounts to a choice of grain size in our evidence identification rules. 

Evidence Model: Measurement Model 
Turning now to the measurement models, we discuss first what is really going on with 

measurement models, that is, how they embody the assessment argument and what they really require 
of us. We then discuss various aspects of how these requirements play out in simulation-based 
environments by describing a number of measurement model families that are well suited for the 
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simulation-based assessments. We then discusses two challenges and some possible solutions for the 
use of these models in simulation-based assessments. 

Measurement Models as the Distillation of the Assessment Argument 
Principle 4: We should be able to interpret any behavior we deem important; a measurement 

model articulates this by linking each possible value of an OV to each possible value of the SMV(s). 
Consider the evidentiary reasoning involved in the use of ordered multiple choice items (Briggs, Alonzo, 
Schwab, & Wilson, 2006). These multiple choice items are characterized by their options being linked to 
different, ordered levels of knowledge, proficiency, or expertise with respect to a domain, as in a 
learning progression. The key point for our purposes is that this approach makes explicit a connection 
between each possible response behavior and a particular interpretation. If a student responds with a 
certain option, it is interpreted as evidence that the student is at a particular level of the ordering. This 
evidentiary interpretation can be formally built into our psychometrics as follows. First, we define our 
evidence identification rules such that instead of parsing the student response into a dichotomous OV 
(for correct and incorrect), the OV will have as many levels as there are response options. And 
accordingly, we move from a dichotomous IRT model to a polytomous IRT model, specifically, one that 
capitalizes on the implied ordering to model each level of the now polytomous OV (see Briggs et al., 
2006, for one such polytomous IRT model). In ECD terms, we are doing two key evidence model 
activities. First, we are defining our evidence identification rules, now drawing a distinction among a 
variety of behaviors and defining an observable with corresponding categories rather than collapsing 
those behaviors into the same category. That is, we assign to each distracter a different value of the OV 
rather than pooling all distracters together as “incorrect.” Second, through the richer IRT model, we are 
defining our measurement model to cohere with (a) the OVs defined in the evidence identification rules 
and (b) the SMV they inform on.  

More generally, what we need is to define the evidentiary bearing of all possible behaviors on 
the SMV of inferential interest. This is done in two stages. In the evidence identification rules, we define 
what features of performance we are going to pay attention to and how the features and distinctions 
we decide to pay attention to are operationalized as OVs. In the measurement model, we set up the 
relationship between the SMVs and OVs in terms of all the possible values for each.  

It is crucial to unpack this last point. To do so, let us reexamine what is going on in Table 1 and 
how it is a distillation of the assessment argument. A measurement model such as that in Table 1 
embodies much more than “Item X measures proficiency θ.” It requires more, and it does more. It 
requires as its inputs choices for the SMVs (here one SMV specified with two possible values) and the 
evidence identification rules to produce OVs (here one OV with two possible values). And what it does is 
specify the connection between the SMV and OV by specifying the probability for each possible value of 
the OV conditional on each possible value of the SMV. By doing so, this embodies an assessment 
argument in that, for any possible value of the OV, we know what the evidentiary bearing is on the SMV. 
Returning to Table 1, if X = 1, our beliefs regarding θ are updated by using the likelihood of 9:2 in favor 
of the student being at a high level of θ. If X = 0, our beliefs regarding θ are updated by using the 
likelihood of 8:1 in favor of the student being at a low level of θ. 
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It is noteworthy that this goes on in all assessments, even if it is not recognized as such. Much 
headway has been made in large-scale assessment by specifying that there is one SMV that drives 
performance on tasks and that for each task, there is a single dichotomous OV based on correct–
incorrect scoring. Finally, an IRT model such as that in (1) efficiently lays out the probability for any value 
of each OV conditional on any given value for the SMV by using only a few parameters. IRT models such 
as those in (1) may not appear similar to the measurement model in Table 1, but this is mainly because 
of the specification of the latent SMV as a continuous variable in IRT rather than as a discrete variable in 
Table 1. We can connect the two by viewing IRT as defining a continuum of possible values for θ and 
then structuring or smoothing the conditional distribution of X given θ in terms of a few parameters (i.e., 
aj, bj, and cj in [1]). Importantly, what they share is that there is a conditional probability distribution for 
each value of the OV for each value of the latent SMV. 

From this view, the measurement model is a distillation of assessment argument. It is the 
junction point between what a student does (the work product) and the inferential targets (the student 
model). It represents our understanding of the evidentiary bearing of student behavior, enacted in a 
statistical measurement model by laying out the conditional probabilities for each value of the OV(s) 
given each value of the SMV(s).  

Shifting to simulation-based assessments, our measurement models do not have to change from 
our familiar forms. Familiar measurement models may be very suitable for simulation-based tasks, 
provided our purposes, constraints, and evidentiary arguments remain the same. In short, if we swap 
out our familiar tasks and insert in their place simulation-based tasks for which we can define evidence 
identification rules that yield OVs viewed as conditionally independent with respect to a single latent 
SMV, things will likely operate in much the same way as they do now. However, this will not be the case 
when we pursue simulation-based assessments in which 

• performance on rich, authentic, integrative tasks often requires students to bring to bear 
expertise on multiple aspects of proficiency 

• performance on such tasks can be characterized in terms of multiple, related features of 
evidentiary relevance 

The first bulleted point suggests the specification of multiple SMVs. The upshot of the second 
bulleted point is that, for a single task, we may choose to pay attention to multiple aspects of 
performance and define multiple OVs accordingly. Importantly for the building of measurement models, 
this departs from the usual 1:1 relationship between tasks and OVs; that is, whereas the usual approach 
to a traditional assessment comprising 50 tasks (items) would specify 50 OVs (i.e., one for each task or 
item that summarizes correctness of performance), we recognize that multiple OVs can come from a 
single task. 

As an aside, these considerations throw into sharp relief the reasons why tools like tables or 
graphics that “map” items to certain aspects of proficiency, claims, or SMVs are insufficient for laying 
out measurement models. But given that they have long been successfully used in assessment 
development, it is instructive to ask, Why are they so useful? Why are they so effective in developing 
assessments, including the development of the measurement model? To the extent that they are 
helpful, it is because there is an implicit or unstated argument. Simply saying “Item X maps to 
proficiency/skill/construct/claim/SMV θ and so is a good item to use in an assessment of θ” is actually 
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shorthand for a more complex argument, such as, “If we administer item X, and take all possible 
behaviors and distill them down into two categories, one for correct and one for incorrect, then having 
an observation in one of these categories tells me something about, or helps me make a desired 
distinction with respect to, θ.” Tools like item maps are useful for communicating what are essentially 
approximations to a more complete evidentiary argument. As a basis for measurement models, they 
work fine as summaries in traditional assessment, but the gap between what they communicate and 
what is required is exacerbated as we pursue more complex evidentiary reasoning. With the desire to 
monitor multiple aspects of performance that come from the explicit construction of a task to yield such 
multiple evidentiary tokens, and the capability that comes from harnessing available technology, we can 
see that the usual ways in which we talk about assessments are insufficient. ECD provides a framework 
for couching the well-established practices of assessment in a general language of assessment that also 
supports moving beyond the (often unrecognized) boundaries of our traditional ways of discussing 
assessments. Our familiar tools and language serve us just fine for traditional assessments because they 
organically grew up at the same time as the purposes and constraints of these assessments. Once we 
want to operate outside of these bounds—as we want to when using simulations—we are well served to 
move to the more general language and representations of ECD.  

The three following subsections briefly review popular and emerging families of 
multidimensional measurement models that are potentially fruitful for situations with multiple SMVs. 
Two succeeding subsections review issues surrounding key challenges to their implementation and 
strategies for addressing those challenges. 

Multidimensional IRT 
Natural extensions of the commonly used unidimensional IRT models are multidimensional IRT 

(MIRT) models, which specify OVs as dependent on multiple continuous latent SMVs. A useful distinction 
here is between OVs modeled as factorially simple or factorially complex (McDonald, 1999). An OV is 
factorially simple if it depends on exactly one latent SMV. Figure 11a depicts a model with all the OVs 
modeled as factorially simple. Each OV is at the destination of exactly one unidirectional arrow 
originating from a latent SMV, indicating the dependence of the OV on that SMV. The bidirectional 
arrow between the SMVs reflects the possibility of a correlation between them. In this case, the MIRT 
model takes on the appearance of patching together several unidimensional IRT models, and though a 
piecewise approach to modeling (i.e., fitting models for each latent variable separately) is possible, there 
are statistical advantages to a simultaneous analysis through MIRT (Zhang, 2004). An OV is factorially 
complex if it depends on multiple latent SMVs; Figure 11b depicts a situation where X4 and X5 are 
factorially complex. The statistical narrative for factorially complex OVs is that they should be modeled 
as conditional on multiple latent SMVs. This is appropriate when the aspect of performance captured by 
the OV depends on multiple aspects of proficiency.  
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Figure 11. Graphical representation of a measurement model with (a) observable variables with 
factorially simple structure and (b) observable variables with factorially simple and factorially complex 

structure. Directed arrows indicate direct effects; bidirectional arrows indicate a correlation. 

 
In specifying the model for factorially complex OVs, the analyst must also specify how the latent 

SMVs combine to produce or drive performance on that aspect of the task. The most popular choice are 
compensatory MIRT models (Reckase, 2009), which specify an additive function for combining the latent 
SMVs. For example, a logistic MIRT model for dichotomous OVs specifies the probability of an observed 
value of 1 (i.e., a correct response) for student i on OV j as (Reckase, 2009) 
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where, in addition to the terms previously defined, ),,,( 21 ′= Miiii θθθ θ  is a vector of M latent SMVs 

that characterize student i, ),,,( 21 ′= jMjjj aaa a  is a vector of M coefficients for OV j that capture 

the discriminating power of the associated SMVs, and jd  is an intercept related to the marginal 
proportion of 1s (i.e., the difficulty of the task).  

The use of a compensatory model reflects an assumption about the way the multiple aspects of 
proficiency combine in driving performance on the task. They are most appropriate in situations where 
the deficits along one aspect of proficiency may be compensated for by strengths of another (e.g., if a 
student’s spatial reasoning proficiency may compensate for a relative lack of geometry skill in solving 
certain problems). This is operationalized by the summation in the exponent in the numerator of the 
first expression in (2). 

Conjunctive MIRT models (Embretson, 1997) are alternatives to compensatory models that 
combine the dimensions via product terms: 
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where, in addition to the terms previously defined, ),,,( 21 ′= jMjjj bbb b  is a vector of M location 
parameters for OV j that capture the location (difficulty) with respect to the associated SMVs. This 
model reflects a conjunctive structure through the product term in the first expression in (3) because a 
high probability of observing a value of 1 is obtained only if the student has high values on all the 
elements in θ relative to the dimension-specific location parameter for the OV in bj. Such models may 
therefore have stronger connections to cognitive underpinnings of how students approach and solve 
tasks (Embretson, 1997).  

Bayesian Networks 
Bayesian networks (BNs; Jensen, 1996; Pearl, 1988) are a flexible family of statistical models that 

structure the joint distribution of variables via recursive conditional distributions. BNs employ discrete 
rather than continuous variables. In contrast to the MIRT models described previously, the SMVs in BNs 
are discrete latent variables. BNs may be represented as acyclic directed graphs (also referred to as 
directed acyclic graphs, DAGs), illustrated in Figure 12. On the surface, DAGs mimic those graphical 
representations presented earlier that follow common path analytic conventions, though certain 
technical distinctions exist (see Mulaik, 2009, chaps. 4 and 5). For our purposes, the key points about 
DAGs are that (a) a unidirectional arrow between variables indicates that the variable at the destination 
of the arrow, referred to as the child, probabilistically depends on the variable at the source of the 
arrow, referred to as the parent, and (b) DAGs are directed in the sense that the edges follow a “flow” of 
dependence in a single direction; in contrast to other graphical modeling traditions, the arrows are 
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always unidirectional rather than bidirectional. Thus, for each endogenous variable at the destination of 
an arrow, there is a probability distribution conditional on the variable(s) on which it depends. For each 
exogenous variable, there is an unconditional probability distribution. 
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Figure 12. DAG for a BN measurement model.  

 
 

The structure of the graph conveys how the model structures the joint distribution. Letting Z 
denote the full collection of variables P(Z) may be factored according to the structure of the graph as 
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where pa(z) stands for the parents of z; if z has no parents, P[z | pa(z)] is taken as the unconditional 
(marginal) distribution of z. Thus the graph reflects the dependence and (conditional) independence 
relationships in the model (Pearl, 1988).  

For example, Table 1 illustrates a conditional probability distribution for an OV given a latent SMV. 
The conditional probability table for factorially complex OVs would expand on the structure in Table 1, 
with rows defining the combinations of the latent SMVs that are the parents of the OVs. Tables 2 and 3 
contain examples of conditional probability structures, as may be specified for, say, X4 in Figure 12.  
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Table 2. Example Conditional Probability Table for an Observable Variable Given Two Student Model 
Variables 

Student model variables Observable variable X 
θ1 θ2 1 0 

High High .9 .1 
High Low .6 .4 
Low High .4 .6 
Low Low .2 .8 

 
 
Table 3. Example Conditional Probability Table for an Observable Variable Given Two Student Model 
Variables Reflecting a Conjunctive Relationship 

Student model variables Observable variable X 
θ1 θ2 1 0 

High High .9 .1 
High Low .2 .8 
Low High .2 .8 
Low Low .2 .8 

 
As noted previously, BNs contain only unidirectional arrows. Hence, to model the joint 

distribution of the SMVs in Figure 12, we specify an unconditional probability distribution for the 
exogenous variable θ1 and a conditional probability distribution for each of θ2 and θ2 given θ1. 

BNs are so named because they support the application of Bayes’s theorem across complex 
networks by structuring the appropriate computations to yield posterior distributions for the unknown 
variables once data have been observed (Lauritzen & Spiegelhalter, 1988; Pearl, 1988). In the context of 
measurement models, once known values for the OVs are entered into the network, evidence 
accumulation occurs when the evidentiary import of the observed values on unknown variables is 
synthesized and propagated throughout the network (Mislevy, 1994).  

BNs are a very flexible approach to building measurement models (Almond et al., in press). One 
can specify a variety of types of relationships, including additive and conjunctive relationships similar to 
those outlined in MIRT models as well as disjunctive and prerequisite relationships, and they support 
the specification of measurement models with dichotomous or polytomous OVs or latent SMVs 
(Almond, 2010; Almond et al., 2001; Almond, DiBello, Moulder, & Zapata-Rivera, 2007; Levy & Mislevy, 
2004; Mislevy et al., 2002). This flexibility supports the use of BNs across a variety of assessment 
applications, including those with complexities that pose difficulties for other methods such as 
longitudinal models for task performance and skill acquisition (Reye, 2004; VanLehn, 2008) and 
situations with serially dependent OVs as may be present in simulation-based assessments where 
multiple OVs are drawn from the same task, as discussed below in the section Managing Contextual 
Dependencies.  
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BNs can be employed with simulation-based assessments in situations where the data arrive 
and are modeled all at once (Almond et al., 2007; Levy & Mislevy, 2004). In addition, because BNs 
accurately and efficiently propagate the evidentiary impact of observations throughout the network 
once values for OVs are known, they support a modular approach to model construction and assembly. 
This supports dynamic assessment, including adaptive testing (Almond & Mislevy, 1999; Reye, 2004), 
intelligent tutoring systems based on simulations (Mislevy & Gitomer, 1996; Reye, 2004; VanLehn, 
2008), and applications to simulation- and game-based assessments in which BNs are assembled on the 
fly as the situation evolves (Iseli, Koenig, Lee, & Wainess, 2010; Shute, Ventura, Bauer, & Zapata-Rivera, 
2009; VanLehn, 2008).  

Cognitive Diagnosis or Diagnostic Classification Models 
A related family of measurement models is known as cognitive diagnosis or diagnostic 

classification models (DCMs; Rupp & Templin, 2008; Rupp et al., 2010). Many DCMs can be cast as BNs 
(Almond et al., 2007), and in this light, these DCMs can be viewed as BN models that reduce the 
parameterization of the conditional probability structure of the OVs via rules that specify how the latent 
SMVs combine. For example, a DCM that specifies a conjunctive rule states that for the OV to take on a 
value of 1 (representing a correct response to a task), the student must be at a certain level on each of 
the OV’s parents. If the student has not reached the requisite level on one or more of these parents, he 
or she is not expected to have an OV value of 1 (i.e., are not expected to correctly complete the task). 
Unexpected correct responses are modeled via guessing parameters, and unexpected incorrect 
responses are modeled via slipping parameters, which may be specified at any of a few levels 
representing different theories of the response process (Rupp & Templin, 2008). Table 3 illustrates an 
example of a conjunctive rule where a correct response is expected if a student is at a high level of both 
SMVs, but the probability of slipping given that the student is at a high level of both is .10. If a student is 
at a low level of one or both SMVs, he or she is not expected to correctly respond to the task, but there 
is a .20 probability that the student will guess correctly.  

Managing Contextual Dependencies 
Principle 5: Understanding the evidentiary bearing of behavior might involve understanding 

other behavior; or, when synthesizing multiple observations, the whole may be more—or less—than 
the totality of its parts. We often need to synthesize the evidentiary import across observations in such 
a way that the whole is different—sometimes more, sometimes less—than simple aggregations afford. 
To illustrate this point, we elaborate on an example of the assessment of knowledge of Newtonian 
physics discussed by Braun and Mislevy (2005). Consider a two-item sequence regarding Newton’s third 
law of motion, which states that for every action, there is an equal and opposite reaction. The first 
question poses a situation where a car and small truck of the same weight as the car are moving at the 
same speed and collide head-on. When asked about the relative amounts of force exerted by the truck 
and the car, the option “The truck exerts the same amount of force on the car as the car exerts on the 
truck” is correct and would constitute evidence of expertise with respect to Newton’s third law. When  
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asked the second question, in which the small truck is replaced with a semi truck twice the weight of the 
car but traveling half as fast, the correct answer is the same. Students answering that the truck exerts a 
larger force on the car represents a misconception associated with thinking that the larger object exerts 
more force. Students answering that the car exerts a larger force on the truck represents a 
misconception associated with thinking that the faster object exerts more force. The point is that the 
interpretation and evidentiary import of a student’s response to the second question depends on the 
first. If a student correctly answers the first question, then observing that the student answers the 
second question by choosing one of the incorrect options constitutes evidence of the student possessing 
the associated misconception. It might not have such an interpretation if the student had instead 
answered the first question incorrectly. From an evidentiary reasoning standpoint, interpreting the 
pattern of responses tells us more than considering them individually.  

The reverse may happen in situations where responses are dependent on an additional, 
unmodeled source of covariation. For example, patterns of performance on tasks surrounding a 
common stimulus (e.g., multiple questions about a single passage in a reading assessment) might be due 
to ancillary features of the stimulus unrelated to the intended inference (e.g., the content of the reading 
passage). In these situations, failure to recognize these contextual effects in aggregations of OVs can 
lead to violations of the local independence assumptions, which may compromise the inferences or lead 
to overstating our precision about the inferences (Junker, 2010).  

One approach to resolving these issues involves employing testlet models (Bradlow, Wainer, & 
Wang, 1999), which, when assuming compensatory relationships, may be viewed as special cases of 
compensatory MIRT models following a bifactor structure (Rijmen, 2010). Figure 13a depicts a bifactor 
representation of the model where the first OVs are formed from a testlet of tasks and the last four OVs 
are formed from a second testlet of tasks. Variable θ1 is a SMV of inferential interest that influences all 
the OVs akin to θ in unidimensional models (Figure 4). Variable θ2 is a SMV that serves to account for the 
associations among X1, . . . ,X4 due to those tasks functioning as a testlet; likewise, θ3 for OVs X5, . . . ,X8. 
Conceptually, the use of this type of model aims at the appropriate evidence accumulation regarding the 
SMV of inferential interest by partitioning the sources of association among OVs. A related set of 
approaches specify a second-order latent variable model, where the first-order latent variables 
representing proficiency in particular contexts are modeled as a child of a second-order latent variable 
model representing proficiency more broadly construed. This model is depicted in Figure 13b. Examples 
of this approach can be found in IRT (Rijmen, 2010) and BNs for simulations (Conati et al., 2002; Mislevy 
& Gitomer, 1996). Theoretical work by Rijmen (2010) in the context of IRT has shown that the testlet 
and higher order models may be viewed as special cases of the bifactor model (Figure 13a), which offers 
flexibility for modeling relationships not supported by its more restricted versions.  
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Figure 13. Graphical representation of a (a) bifactor measurement model and  
(b) second-order measurement model. 

Testlet structures may also be modeled via conjunctive relationships. In a conjunctive IRT 
approach, the conditional probability of performance on a later task in the testlet is formulated as 
dependent on performance on an earlier task (Jannerone, 1997), as may be appropriate for situations 
where the interpretation of one performance depends on a previous performance, as in the Newtonian 
physics questions example. Almond, Mulder, Hemat, and Yan (2009) described a related approach that 
makes the conditioning of performance on one aspect of the task as dependent on another explicit by 
including directed edges between OVs. Figure 14 depicts such a model, where the arrow from X1 to X2 
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indicates that X1 is a parent of X2 and the conditional probability of X2 is specified as depending on X1 as 
well as θ. This can be extended in any of a number of ways; for example, X5 , X6, and X7 in Figure 14 
operate as a chain of such dependence dependencies. See Almond et al. (2009) for a description and 
evaluation of the use of compensatory, conjunctive, and several other types of relationships for 
managing the contextual effects and local dependence with BNs. 
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Figure 14. Graphical representation of a measurement model with a direct effect between  
observable variables. 

 

From the perspective of the usual evidentiary argument in traditional assessment, these 
dependencies are something of a nuisance in that our interpretative narrative and measurement model 
built around disconnected tasks yielding conditionally independent OVs does not hold. But situations 
that give rise to these contextual dependencies in our data—namely, those in which what a student 
does at one point depends on what the student did previously—are likely to be the norm in complex 
simulation-based tasks. This may be due to explicit structuring of task or assessment. For example, in 
the ecosystems assessment depicted in Figure 8, the student is asked to make a prediction, engage with 
the simulation, evaluate the prediction in light of what the student saw, and then explain his or her 
thinking. This is even more prevalent in more open workspaces. In certain Packet Tracer tasks, the 
workspace (Figures 5 and 6) is so open that the sequence of actions is completely left to the student to 
determine. Strategies for managing these contextual dependencies in simulation-based assessments 
include specifying additional latent variables (Figure 13a) or directly modeling the dependencies (Figure 
14); see Almond et al. (2009) and Levy and Mislevy (2004) for examples.  

Where Do the Numbers Come From? 
A challenge that is particularly acute for simulation-based assessments is that of the values of 

the conditional probabilities or the model parameters that govern them. In the context of unrestricted 
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BNs, this means the conditional probabilities that make up the conditional probability tables. There are a 
number of ways we might simplify this via parametric assumptions. IRT models may be used in ways 
that effectively smooth the conditional probabilities over the possibly many values of the SMVs (Almond 
et al., 2001; Almond et al., 2009; Levy & Mislevy, 2004). Similarly, DCMs simplify this process by starting 
with deterministic relationships (i.e., conditional probabilities of values 1 or 0) and then backing off such 
stringent assumptions with slip and guessing parameters, often constrained equally over OVs (Rupp & 
Templin, 2008). 

Eventually, we will be left with the task of specifying the conditional probabilities, either directly 
or via a reduced set of parameters that govern them. There are two sources of information for those 
values. The first is via estimation from data. This follows the usual form as in other assessment contexts. 
We pilot the tasks, collect data, and estimate conditional probabilities or parameters accordingly. 
Compared to unidimensional IRT and CTT procedures, relatively little is known about sample size and 
related needs for estimating parameters to a sufficient precision in these more recently developed 
models. This strategy might be especially challenging for more involved simulation-based tasks that 
require longer times-on-task for students as well as yielding OVs that are not deemed conditionally 
independent. In traditional assessment formats, students attempt many tasks, and the resulting OVs are 
treated as conditionally independent. In simulation-based assessments, students might only engage in a 
few tasks, and to the extent that each interaction yields multiple OVs, it may not be appropriate to treat 
all the OVs as conditionally independent. What the sample size and piloting needs are in these contexts 
are not well established. This is further exacerbated in understanding features of performance 
corresponding to the processes in which students engage, as these tend to vary more than evaluations 
of the end-of-state in open workspaces. In some cases, there may be essentially an infinite number of 
behaviors in which a student can engage. If our evidence identification rules indicate that we must 
account for all of them and specify OVs with many values, then it is likely that no sample will be large 
enough to estimate all relevant conditional probabilities. 

One approach for mitigating the needs of large samples involves leveraging collateral 
information. If evidence of proficiency can be gained from outside the assessment activity, that can be 
leveraged into the analysis of data from piloting. An ideal case would be if there was a mechanism for 
knowing each student’s status on the SMV. We would then need to pilot the new tasks to a large 
enough sample of students at each level of proficiency to calculate conditional probabilities. Certainty 
regarding student proficiency represents a gold standard that can be approximated when perfect 
knowledge is unavailable. A well-established assessment of the target proficiency could be used to 
obtain estimates of SMVs, which could then be used in lieu of perfect knowledge of the gold standard. In 
this case, a Bayesian approach that yields posterior distributions rather than point estimates might be 
well suited to managing this uncertainty. 

A second source of information is SME beliefs. We can set the values for the conditional 
probabilities or parameters that govern them based on SME expressions of things. For example, 
communications with SMEs might suggest that the probability that a student of high proficiency 
incorrectly completes a task yielding X = 0 is .1 and that the probability that a student of low proficiency 
correctly completes a task yielding X = 1 is .2. We would then set the values of the conditional 
probability table accordingly, as in Table 1. This has the advantage of being efficient, as no piloting, data 
collection, or estimation is required, but it has the disadvantage that it is entirely driven by a priori SME 
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opinion and, of course, may not accurately reflect the true relationships. Several simulation-based 
assessments have adopted this approach (Mislevy & Gitomer, 1996; VanLehn & Niu, 2001). Importantly, 
these assessments are of relatively low stakes, where the impact of less-than-the-best values for the 
conditional probabilities or their parameters is minimal. It is difficult to see how such an approach that 
does not make recourse to piloting and calibration could be used in high-stakes environments.   

A third approach combines the information from SMEs with data analysis from piloting. A 
Bayesian approach to statistical modeling allows for the modeling of SME expectations and beliefs in the 
form of prior distributions for conditional probabilities or the model parameters that govern them. This 
can then be synthesized with data to yield posterior distributions. This is a powerful approach for 
leveraging all sources of information about complex assessments. For example, Levy and Mislevy (2004) 
detail the construction of BN for a simulation-based assessment in which the conditional probability 
tables are structured according to complex relationships and smoothed via IRT-type models, which 
greatly reduces the number of parameters. SME’s expectations regarding the difficulty of the tasks are 
expressed via prior distributions, which are then combined with data from piloting to yield posterior 
distributions for the parameters and the resulting conditional probability tables.  

Additional Challenges to Psychometrics for Simulations 
The preceding sections have reviewed a number of recent advances in psychometrics and key 

challenges to them in need of attention as they are applied to simulation-based assessments. This 
section characterizes two other challenges. 

Maturity of the Models 
Over six decades of research and application, unidimensional IRT has matured to the point 

where there are well-known principles and procedures for addressing psychometric issues, including 
sample size needs for calibration and estimation, reliability/precision/information, test form creation, 
linking and equating, adaptive administrations, evaluating assumptions, checking data–model fit, 
differential functioning and invariance, and so on. As the preceding discussion hinted at, though MIRT, 
BNs, and DCMs are on solid footing statistically, they are in their relative infancy when it comes to their 
application as measurement models in larger assessment enterprises. Efforts are under way to tackle 
these issues within each of these modeling traditions; see Reckase (2009), Almond et al. (in press), and 
Rupp et al. (2010) for recent accounts of the states of these arts. What is needed is some basic 
psychometric research, both methodological and more applied, to increase our collective knowledge 
about the capabilities and limitations of these measurement modeling approaches. 

Validation 
Validation in simulation-based contexts poses a number of challenges. We might only have a 

few tasks, particularly if the tasks are involved and time consuming. Or we might be focusing on forms of 
data with which we are not accustomed to working, such as those derived from monitoring sequences 
of student actions. Or we might be using simulations because we think they afford us the opportunity to 
assess constructs that might be intractable with traditional formats (e.g., processes or sequences, how 
students respond to evolving situations, or efficiency). This poses the usual conundrum for developing 
new assessments: How much should the results relate to other assessments? If they correlate strongly, 
then are we really measuring something different? If they do not relate to other assessments, what, 
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then, could constitute evidence for our interpretations? How much is too much or not enough? A 
related set of issues surround questions of generalizability and transfer. To what extent are the 
interpretations made from a simulation-based assessment that contains perhaps only a few (more 
involved) tasks supported for instances in the domain that depart from those tasks or the simulation 
environment entirely?  

Data analysis, including evaluations of data–model fit and associations with other variables, can 
support efforts toward validation. However it is advanced here that validation arguments are strongly 
enhanced by principled design. That is, rather than hope for validity, we should put our efforts into 
building in validity up front through the development of the assessment with the evidentiary argument 
explicitly in mind. The temptation to employ the technology at our disposal should be resisted until it is 
done in concert with an evidentiary assessment argument. 

A Peek Into the Future 
Short-Term Integration of Simulation-Based Tasks With Assessments 

In the short term, the psychometrics of simulations are likely to look much like the 
psychometrics of traditional assessments. For assessment programs with existing CTT- or IRT-based 
measurement modeling, a first step would be to involve simulation-based tasks that conform to these 
measurement models and the evidentiary arguments they embody (i.e., short, disconnected tasks, with 
simple or abstract evidence identification rules yielding one or few OVs  per task modeled as dependent 
on a single SMV). Over time, more complex simulation-based tasks and accompanying measurement 
models and evidentiary arguments can be developed, using strategies discussed next. 

Model Building Versus Choosing 
The preceding descriptions of MIRT, BN, and DCM models are suggestive of a set of choices 

regarding measurement models. However, much can be gained by viewing the situation less as one in 
which we choose an existing measurement model and more of one in which we build a measurement 
model for our specific needs. To see this, we briefly review recent research on statistical modeling in 
psychometrics that has led to key advances on two related fronts. First, connections among the various 
types of models are being explored. Examples include connections between factor analytic and 
compensatory MIRT models (McDonald, 1999), the placement of instances of each under broader 
frameworks (Mellenburgh, 1994; B. O. Muthén, 2002; Skrondal & Rabe-Hesketh, 2004), similar efforts 
couching DCMs in more general modeling frameworks (Henson, Templin, & Willse, 2009; von Davier, 
2008), and their connections with BNs (Almond et al., 2007; Rupp & Templin, 2008). Similarly, models 
with discrete latent variables can be used to approximate those with continuous latent variables, and in 
some cases, vice versa; furthermore, in some cases, there are statistical equivalencies among them 
(Haertel, 1990). In short, the models share more than it may seem at first glance.  

The second key advance concerns computation. Generally, improvements in estimation routines 
and software (Cai, 2010a, 2010b; Cai, Thissen, & du Toit, 2011; L. K. Muthén & Muthén, 1998–2010; 
Norsys Software Corporation, 2007; Rabe-Hesketh, Skrondal, & Pickles, 2004; Spiegelhalter, Thomas, 
Best, & Lunn, 2007; von Davier, 2005) have expanded our capabilities to fit complex measurement 
models. Among the many other developments, the last 15 years have seen the rapid rise of Markov 
chain Monte Carlo methods that have opened up a variety of possibilities for measurement models (see 
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Levy, 2009, for a review); particularly germane to the current focus is their application to complex BN 
models for simulation-based assessments (Almond et al., 2009; Levy & Mislevy, 2004). 

With these modeling and computational developments, the psychometric community is capable 
of employing a wide variety of measurement models for complex assessment, including those that 
attend to features of simulation-based assessment. In particular, what the flexibility of these modeling 
and estimation paradigms provides is the capability to shift from a mode of choosing a measurement 
model to one of building a measurement model. The former is likely sufficient in simpler evidentiary 
reasoning contexts that constitute the majority of operational assessment. A 2PL IRT model may be 
perfectly sufficient if our evidentiary frame (a) targets a single broad conceptualization of performance 
along which we would like to differentiate students, taken as a cross-sectional snapshot and 
operationalized as a single SMV, and (b) contains many discrete tasks that each yield one dichotomous 
OV corresponding to correctness of the answer that can be treated as conditionally independent given 
the broad conceptualization of proficiency. To the extent that our evidentiary argument departs from 
this, we must modify the model. Slight departures call for slight model extensions. Simple examples 
include allowing for the possibility of guessing in selected response tasks via a 3PL structure for the 
resulting OVs, or using polytomous IRT models for polytomous OVs derived from finer grained 
characterization of performance, or managing a common source of dependence for certain OVs based 
on the task presentation via testlet model structures.  

However, as we increasingly depart from this basic line of evidentiary reasoning, our 
measurement model will need to change accordingly. It has been argued here that the evidentiary 
narrative present in the use of simulations, involving  

• multiple SMVs that may be related in complex ways 
• multiple OVs from a single task, derived from features of both the end-of-state and the 

process by which it emerged 
• interpretations of later behaviors that depend on earlier behaviors 
• complex (e.g., conjunctive) relationships among the entities 

may be so far afield from the usual narrative that rather than apply modifications to an off-the-shelf 
model, a better approach is to recognize that what we have is a wide tool kit of modeling components 
that can be assembled as needed to fit our purposes (Levy, Mislevy, & Behrens, 2011). Instead of asking 
“should I use a 2PL or 3PL here?” the operative question becomes “given the paradigmatic forms I have 
at my disposal, what should I build into my measurement model that is in concert with my student 
model, task model, and evidence identification rules?”  That is, rather than choose a model, we build 
one using whatever components may be deemed necessary: got conditionally independent OVs?—
familiar IRT models may be useful; have contextual effects?—use a testlet or multidimensional model; 
want to model multiple strategies?—mixture components may be folded in; want to also model 
efficiency or other aspects of proficiency?—specify additional latent SMVs; want to recognize clustering 
of students?—multilevel structures may layered. When viewing these statistical expressions as tools to 
call into service as needed, the landscape of possibilities of measurement models is greatly expanded. A 
modular approach to building measurement models also allows for the localized construction of model 
fragments, which can be specified and assembled as needed.  

The payoff of these developments is that we have considerable more capabilities than is 
commonly believed and that the recently rapid pace of expansion is likely to continue. Thus building 
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assessments should be treated with an attitude that does not feel bound by beliefs about psychometric 
limitations. The recent conceptual and computational developments in statistical modeling have 
broadened the potential for measurement models to better reflect or rich theories. Viewing 
measurement models as narratives (Mislevy, Levy, Kroopnick, & Rutstein, 2008), we can tell better 
stories now—stories that are more nuanced and better aligned with the complexities of the real world 
and substantive theories about cognition, learning, and performance, which are potentially better 
represented in simulation-based environments.   

Importantly, this means more tightly integrating psychometrics at the outset of the assessment 
development; that is, psychometrics for complex assessment arguments such as those that are invoked 
in simulations are unlikely to work when psychometric considerations are called into service long after 
design, delivery, and data collection. This approach may serve us adequately for assessments with 
simple formats, confined work products, and chunkable evidentiary arguments in the form of 
conditional independencies. But it is unlikely to work when we shift to more complex evidentiary 
arguments. Simulation environments with open workspaces that align with connected evidence 
structures are difficult to psychometrically tackle if those considerations are not incorporated into the 
design of the assessment and the argument it embodies.  

Integrating Assessment With Learning and Instruction 
Looking further ahead, simulations offer the potential to enact a number of changes to the 

typical way assessment is conducted. Simulations offer enormous potential for integrating assessment 
with learning and instruction; that is, we can replace the current “Teach. Stop. Test.” mode in which the 
assessment is clearly marked as different from instruction and learning with one in which assessment is 
ubiquitously and seamlessly integrating with instruction and learning (Shute, Levy, Baker, Zapata, & 
Beck, 2009). See Behrens et al. (2008), DiCerbo and Behrens (2012), and Shute (2011) for examples and 
discussions of the use of simulations and related technologies for conducting such “stealth” (Shute, 
2011) assessment in ways that are tightly integrated with instruction and learning. Packet Tracer, for 
example, was conceived of as a learning environment to be used for instruction rather than as a 
separate assessment environment. But just having the environment is not enough. What such 
integration will require, however, is a stronger alignment between substantive issues of knowledge and 
learning and performance in the domain with the psychometric model and the assessment. 

If we continue with this vision of simulations as a way for assessment to become intertwined 
with instruction and learning, assessment then becomes less of a static, cross-sectional snapshot of 
proficiency and more of a longitudinal tracking of student proficiency as it changes over time. 
Importantly for psychometrics, most of our assessment arguments and measurement models are 
aligned with the “snapshot” view of assessment, in which it is assumed that learning during the 
assessment does not occur. This assumption will have to be discarded and techniques for modeling the 
change in student performance over time will need to be employed. Sources include developments in 
IRT (Embretson, 1991; Fischer, 1995, 2001; von Davier, Xu, & Carstensen, 2009), BNs (Reye, 2004), and 
general modeling frameworks drawing from structural equation modeling and multilevel modeling 
traditions (Skrondal & Rabe-Hesketh, 2004). Importantly, such tools may also be relevant in the context 
of a single assessment if the activity is one that facilitates learning, as in intelligent tutoring systems 
(Mislevy & Gitomer, 1996; Reye, 2004; VanLehn, 2008).  
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Flexibility in building measurement models will also bevitalas we increasingly need to build in 
contextualization to our assessment argument. As discussed previously, this will be important in 
simulation-based tasks with various levels of scaffolding. By extension, this will be even more important 
as we consider the role of assessment as embedded within other student activities surrounding learning. 
If the future of assessment includes mining the deluge from an ever-increasing digital ocean of 
information (DiCerbo & Behrens, 2012; Shute et al., 2009), our inferences and models will need to 
include recognition of the student’s situation—what the student is working on, what the student has 
done in the past, and how to interpret the student’s current behaviors in light of this.  

Summary 
Simulations pose opportunities for conducting innovative assessment, not only in terms of the 

student experience but also in terms of the assessment argument we can construct—what inferences 
we are able to make, what data we can collect, and how those data may be treated as evidence for 
facilitating those inferences. It is argued that a measurement model (a) may be viewed as a 
quantification of an evidentiary argument that seeks to reason from what students say, do, or produce 
to notions of their proficiency, and (b) is therefore inextricably linked with the adopted conceptions of 
proficiency, tasks deployed in service of assessment, and the interpretations of student performances 
on those tasks. Thus our usual approach to psychometric and measurement models may suffice if our 
evidentiary argument remains unchanged from its familiar form when employing simulation-based 
tasks. However, to the extent that our evidentiary argument changes, our measurement model will need 
to change as well. 

Figures 15 and 16 compactly summarize the main theses regarding the core opportunities and 
challenges posed for psychometrics in simulation-based assessments as opposed to those in traditional 
assessment. Figure 15 lays out the inferential argument for traditional assessment as follows. We devise 
an assessment system in which we might see any of a number of possible behaviors. We seek to use 
these behaviors as grounds for the desired inferences. This is accomplished in evidence identification by 
processing the behaviors that occur in familiar formats that are relatively easily interpretable to produce 
OVs. These OVs are then entered into a unidimensional measurement model characterized by a single 
latent SMV, where this SMV is our representation of student proficiency used to make inferences and 
decisions about the student. 

The key departures from this evidentiary narrative when we consider simulations are depicted 
in Figure 16. Most prominent is that the space of possible behavior in simulations is now much larger, 
and the desired inferences may be larger in scope or more nuanced as well. Behaviors are observed in 
possibly unfamiliar formats, and now it may be much more difficult to characterize salient aspects of 
these behaviors. The resulting OVs are modeled in much more complex ways, owing to their 
dependencies due to their contextualized nature and their hypothesized dependence on richer, 
multidimensional student models.  

It is argued that recent developments have the psychometric community well poised to tackle 
these situations. In particular, modern data analytic methods coupled with principled assessment design 
offer a promising approach to meeting challenges and fulfilling the promise of simulation-based 
assessment. 
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Figure 15. Schematic for the evidentiary argument for traditional assessment. 

 

 

Figure 16. Schematic for the evidentiary argument for innovative simulation-based assessment. 
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Recommendations 
We conclude with general recommendations about psychometrics for simulation-based 

assessments. 

Recommendation 1 
Simulation-based tasks may be most easily deployed or integrated into assessments in contexts 

where they are used in concert with traditional or existing evidentiary arguments. Simulation-based 
tasks may be used in support of evidentiary arguments that are richer than those of traditional 
assessments. Doing so will likely involve innovative measurement models.  

Recommendation 2 
The recent developments in statistical modeling allow for a broad set of choices for such 

innovative measurement models. Developers of simulation-based assessment will be well served to 
adopt a perspective that views that a measurement model can be built or customized to their specific 
needs. This will be best accomplished by including psychometric considerations from the outset and 
throughout the development of the assessment.  

Recommendation 3 
Basic psychometric research is needed on these innovative measurement models. Such research 

should address the use of measurement models in service of assessment needs and could include 
methodological or applied research on areas such as model calibration and parameter estimation, 
reliability, validity, test form creation, linking and equating, adaptive administration, data-model fit, and 
evaluating assumptions.  

Recommendation 4 
The key challenges to simulation-based assessment are likely to be most successfully addressed 

by integration of subject matter expertise and data analysis at all phases. Accordingly, psychometrics 
should play an integral role in the design, development, revision, and use of simulation-based 
assessments.  
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